首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osmotic adjustment in leaves of sorghum in response to water deficits   总被引:17,自引:12,他引:17       下载免费PDF全文
Jones MM 《Plant physiology》1978,61(1):122-126
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.  相似文献   

2.
The enzyme activities of the proline metabolic pathways were determined in control and satt-treated (140 M NaCl) calli derived from cotyledons of the domestic saltsensitive tomatoLycopersicon esculentum and the wild salt-tolerantL. pennellii. Glutamate, glutamine, asparagine, and aspartate levels increased in both genotypes under salt stress, while proline accumulation increased markedly only in the salt sensitive tomato. Activity of glutamine synthetase (GS) decreased in the salt-treated calli of the domestic species, whereas both NADH- and NADPH-glutamate synthase (GOGAT) activities increased; GS and NADPH-GOGAT decreased together in the salinized calli of the wild species. Decreasing ornithine levels were found due to NaCl in both tomato populations, while ornithine transaminase (OT) decreased in the wild type only. Increasing NADPH-Δ-pyrroline-5-carboxylate reductase (P5CR) and decreasing proline oxidase (Pro oxi) occurred in the salinized calli of the wild type. Conversely, Pro oxi and proline dehydrogenase (Pro dH) decreased highly in the salinized calli of the domestic population, while no significant changes in P5CR were found.  相似文献   

3.
Both interspecific and intraspecific mechanisms restrict the exchange of genes between plants. Much research has focused on self incompatibility (SI), an intraspecific barrier, but research on interspecific barriers lags behind. We are using crosses betweenLycopersicon esculentum andL. pennellii as a model with which to study interspecific crossing barriers. The crossL. esculentum×L. pennellii is successful, but the reciprocal cross fails. Since the cross can be successfully made in one direction but not the other, gross genomic imbalance or chromosomal abnormality are precluded as causes. We showed that the lack of seed set observed in the crossL. pennellii×L. esculentum is due to the inability of pollen tubes to grow more than 2–3 mm into the style, whereas S1 crosses show continued slow pollen tube growth but, also, fail to set seed. These results indicate that the unilateral response is a barrier distinct from SI, differing from SI in the timing and location of expression in the style. We therefore suggest that this unilateral response in theL. pennellii×L. esculentum cross is more accurately referred to as unilateral incongruity (UI) rather than interspecific incompatibility. Periclinal chimeras were used to determine the tissues involved in UI. The results of crosses with the available chimeras indicate that the female parent must beL. pennellii at either LI (layer 1) or both LI and LII (layer 2) and the male parent must beL. esculentum at either LII or both LI and LII to observe UI similar to that seen in theL. pennellii×L. esculentum cross. Pollinations with a mixture of pollen fromL. pennellii and from transgenicL. esculentum plants harboring a pollen-specific GUS reporter gene marker were used to ascertain whether the growth of the pollen tubes of either species was modified as a possible means of overcoming UI. We found no evidence of communication between the two types of pollen tubes to either enhance or restrict all pollen tube growth.  相似文献   

4.
The water content-water potential relation in stressed and unstressed cassava ( Man-ihot species) was examined to ascertain (i) the magnitude of osmotic adjustment in response to water stress and (ii) the mechanisms of such adjustments.
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves.  相似文献   

5.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

6.
Reproductive abnormalities reduced the percent stainable pollen, and fruit and seed set in interspecific F2 populations derived from crosses of Lycopersicon esculentum and L. pennellii but were not observed in parental lines and interspecific F1 populations. The degree to which these reproductive abnormalities were expressed in the interspecific F2 populations was affected by cytoplasm. Reproduction was impeded in interspecific F2 populations containing L. esculentum cytoplasm (F 2 Le ) by reduction in pollen production, the lack of fruit set and a high proportion of parthenocarpic fruit among plants capable of fruit set. The F2 populations containing L. pennellii cytoplasm (F 2 Lp4 ) showed a reduced frequency of reproductive abnormalities at all stages of reproductive development, resulting in higher values for percent stainable pollen, fruit and seed set and higher proportions of the F 2 Lp4 populations being capable of setting fruit or seed than F 2 Le populations. The major barrier remaining in F 2 Lp4 populations was reduced fruit set compared to parental lines. The barrier to fruit and seed set observed in the F 2 Le populations, and to a lesser extent in the F 2 Lp4 populations, occurs around the time of fertilization or early embryonic development. The effect of L. pennellii cytoplasm on barriers in the F 2 Lp4 populations is proposed to be due to an interaction between cytoplasmic and nuclear genes during fertilization of the F1 plants to produce F2 populations and may also affect subsequent generations.  相似文献   

7.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt tolerant relative L. pennellii (Correll) D'Arcy accession PE-47, were grown during spring-summer 1989 under unheated plastic greenhouse conditions. Plants were submitted to two different salt treatments using 0 and 140 mM NaCI irrigation water. In both tomato species, salinity caused a proportionally larger reduction in leaf area than in leaf weight and, in L. esculentum , a proportionally larger decrease in stem weight than in leaf weight. Daily variations in leaf water potential (Ψ1) were fundamentally due to changes in the evaporative demand of the atmosphere. Reductions in Ψ1 due to salinity were consistent only in L. esculentum . In all the conditions studied, leaf turgor was maintained. Leaf conductance (g1)was higher in L. esculentum than in L. pennellii .Salinity induced a clear reduction in g1 levels in L. esculentum whereas, in L. pennellii , this reduction was noted only in May. In both species the Ψos (leaf osmotic potential at full turgor) levels were reduced by salinity. The bulk modulus of elasticity (E) and relative water content at turgor loss point (RWCtlp) were not affected by salinity. The RWCtlp values in L. pennellii seem to be controlled by E values.  相似文献   

8.
The effects of salinity on growth and carbon balance in the cultivated tomato Lycopersicon esculentum (L.) Mill. cv. VF 234 and in a wild, salt-tolerant relative, L. pennellii (Correll) D'Arcy accession Atico, were compared. The level of salinity that significantly reduced growth and affected morphology was lower for the cultivated than for the wild species.
Net CO2 fixation, stomatal conductance and the specific activity of ribulose bisphosphate carboxylase (EC 4.1.1.39) were more decreased by salinity in the wild tomato than in the cultivated. In both species, the salinity-associated decrease in assimilation was related to a decrease in net photosynthesis and to carbon reallocation favoring heterotrophic organs.  相似文献   

9.
Changes in leaf solute contents in response to saline (NaCl) and osmotic (polyethylene glycol, PEG, 6000) stresses were measured in three different salt tolerant cultivars of Lycopersicon esculentum (L.) Mill. (Pera, P-73 and Volgogradskij), and its wild relative L. pennellii (Correll) D'Arcy accession PE-47. Iso-osmotic stresses (–0. 5 MPa) of NaCl (140 mM) and PEG 6000 (150 g l-1) were applied to one-month old plants for 3 weeks. Decreasing leaf dry weight was similar in L. pennellii or L. esculentum cv. P-73 and Volgogradskij under both stresses, while leaf dry weight of L. esculentum cv. Pera decreased more under PEG stress than under NaCl stress. Water contents decreased in all the PEG treated populations, while their calculated solute potential (Ψs increased. Under osmotic stress, the total ion contents decreased in relation to control, whereas organic solutes (sugars, amino acids and organic acids) markedly increased in both tomato species, specially in the tomato cultivars, where these solutes represented 50% of the Ψ5 calculated. Soluble sugar increase was three times higher in leaves of L. esculentum than in the leaves of L. pennellii. Free proline increased under both stresses and its content was highest in L. esculentum and in L. pennellii, respectively, under NaCl and PEG stresses. Nevertheless, the contribution of this metabolite to Ψs did not exceed 5%, irrespective of treatment and species. The greater organic solute accumulation in L. esculentum than in L. pennellii– which was not reflected in their Ψ5 values – was not correlated with the tolerances of the two species to osmotic stress. Therefore, osmotic adjustment may not be the only process influencing salt and drought tolerances in tomato; the ability of plants to regulate their metabolic and physiological functions could also play an important role under these harmful conditions. The possible roles of inorganic solutes and metabolites in osmotic adjustment, energetic metabolism and redox regulation are discussed  相似文献   

10.
Summary The potato aphid, Macrosiphum euphorbiae Thomas, is an important pest of tomato, Lycopersicon esculentum Mill., because it transmits tomato viruses and directly reduces crop yields by its feeding. This study was conducted to determine whether the wild tomato species, Lycopersicon pennellii (Corr.) D'Arcy, would be useful as a source of potato aphid resistance for tomato. Type IV trichome density and aphid resistance were assessed in six generations (P1, P2, F1, F2, BC1P1, and BC1P2) from crosses between L. pennellii (LA 716) and two tomato cultivars, New Yorker and VF Vendor. Weighted leastsquares were used in joint scaling tests to estimate the relative importance of gene effects on type IV trichome density and potato aphid resistance of the hybrids. A simple additive-dominance model adequately explained the variation in type IV trichome density. Models which included digenic epistatic effects were required to explain the variation in aphid resistance. Standard unit heritability estimates of aphid resistance in the backcross to L. esculentum were obtained by regression of BC1F2 off-spring families on BC1F1 parents. Regression coefficients and heritability estimates varied between years with the level and uniformity of the aphid infestation. In the 1985–1986 growing seasons, when aphid infestations were uniform, aphid resistance exhibited a moderate level of heritability (29.8% ± 14.1% and 47.1% ± 11.5% in New Yorker and VF Vendor backcross populations, respectively). The non-uniform aphid infestation of 1984 resulted in lower heritability estimates in the 1984–1985 growing seasons (16.1% ± 15.7% and 21.9% ± 14.8% in the New Yorker and VF Vendor backcross populations, respectively). Selection for potato aphid resistance would probably be most efficient if it were delayed until gene combinations are fixed in later generations, because of the large epistatic effects and the low heritability of this trait in seasons with variable aphid infestations.  相似文献   

11.
Osmotic adjustment in the filamentous fungus Aspergillus nidulans.   总被引:5,自引:0,他引:5       下载免费PDF全文
Aspergillus nidulans was shown to be xerotolerant, with optimal radial growth on basal medium amended with 0.5 M NaCl (osmotic potential [psi s] of medium, -3 MPa), 50% optimal growth on medium amended with 1.6 M NaCl (psi s of medium, -8.7 MPa), and little growth on medium amended with 3.4 M NaCl (psi s of medium, -21 MPa). The intracellular content of soluble carbohydrates and of selected cations was measured after growth on basal medium, on this medium osmotically amended with NaCl, KCl, glucose, or glycerol, and also after hyperosmotic and hypoosmotic transfer. The results implicate glycerol and erythritol as the major osmoregulatory solutes. They both accumulated during growth on osmotically amended media, as well as after hyperosmotic transfer, except on glycerol-amended media, in which erythritol did not accumulate. Furthermore, they both decreased in amount after hypoosmotic transfer. With the exception of glycerol, the extracellular osmotic solute did not accumulate intracellularly when mycelium was grown in osmotically amended media, but it accumulated after hyperosmotic transfer. It was concluded that the extracellular solute usually plays only a transient role in osmotic adaptation. The intracellular content of soluble carbohydrates and cations measured could reasonably account for the intracellular osmotic potential of mycelium growing on osmotically amended media.  相似文献   

12.
13.
14.
J. Lecoeur  J. Wery  O. Turc 《Plant and Soil》1992,144(2):177-189
The objectives of this study were to test the existence of osmotic adjustment in a field-grown chickpea (Cicer arietinum L.) and to reproduce it in controlled conditions for a more complete study. In a first experiment, carried out in the field with the cultivar Casoar, we described two types of drought stress that a field-grown chickpea could experience during flowering in our conditions. They were characterized with soil and plant water status. Osmotic adjustment was taking place when the stress increased progressively. This evidence was obtained with the measurement of plant water potential and relative water content during a drying-rewatering cycle. In a second experiment, carried out in pots with rain shelter, with cultivars Casoar and Sombrero, we reproduced this particular type of drought stress, on the basis of soil water potential. Measurement of plant water status was based on water, osmotic, and turgor potentials, and relative water content. It showed that chickpea is able to realize osmotic adjustment during a controlled drying-rewatering cycle limited in intensity and duration. The analysis of a broad range of solutes (nitrate, sucrose, glucose, proline, malic acid and six other organic acids) gave a good explanation of the measured reduction of osmotic potential. Organic acids accounted for most of this reduction: 97% for Casoar and 96% for Sombrero. Malic acid, which represented about half of these acids, and malonic acid significantly accumulated during the drought stress. They explained 78.2% (for Casoar) and 75.8% (for Sombrero) of the reduction of osmotic potential. Cultivar Sombrero was the only one able to accumulate some sucrose.  相似文献   

15.
通过温室模拟控制实验,研究了咸淡交替灌溉处理对外来克隆植物大米草(Spartina anglica)形态性状、克隆生长、生物量积累及分配格局的影响。实验共设6种浇灌处理:单一淡水灌溉(D)、单一咸水浇灌(X)、淡咸交替灌溉(DX)、咸淡交替灌溉(XD)、淡咸淡交替灌溉(DXD)和咸淡咸交替灌溉(XDX)。结果表明:DX处理条件下,大米草株高、叶片数及根长均达到最高;克隆数最多,且显著高于X、DXD和XDX处理;芽数及根状茎总长均显著大于XDX处理;在DX和D处理下,地上生物量、根系生物量、地下生物量和总生物量均显著高于其它处理。这表明作为滨海盐沼植物,大米草种群比较适应淡咸水交替环境,单一的咸水,以及过度的咸淡转换均不利于大米草的生长繁殖与生物量积累,而淡咸水交替过程的失序可能是引起我国大米草种群衰退的重要原因。  相似文献   

16.
Summary The organization of the mitochondrial genome and the genotype of the chloroplast genome was characterized using restriction fragment length polymorphisms in a population (82 individuals) of symmetric and asymmetric somatic hybrids of tomato. The protoplast fusion products were regenerated following the fusion of leaf mesophyll protoplasts of Lycopersicon esculentum (tomato cv UC82) with suspension cell protoplasts of L. pennellii that had been irradiated with 5, 10, 15, 25, 50, or 100 kRads from a gamma source. The chloroplast genome in the somatic hybrids showed a random pattern of inheritance, i.e., either parental genome was present in equal numbers of regenerants, while in asymmetric somatic hybrids, the chloroplast genotype reflected the predominant nuclear genotype, i.e., tomato. The mitochondrial genome in the symmetric somatic hybrids showed a non-random pattern of inheritance, i.e., predominantly from the L. pennellii parent; asymmetric somatic hybrids had more tomato-specific mitochondrial sequences than symmetric somatic hybrids. The non-random inheritance of the chloroplast and mitochondrial DNA in these tomato protoplast fusion products appears to be influenced by the nuclear background of the regenerant.  相似文献   

17.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

18.
To assess non-specific bronchial reactivity the effect of inhaling ultrasonically nebulised solutions of distilled water and hypotonic (0.3%), isotonic (0.9%), and hypertonic (2.7%, 3.6%) saline was investigated in 10 asthmatic patients and nine normal subjects. Expired ventilation and the maximum percentage fall in forced expiratory volume in one second (FEV1) were recorded. The sensitivity to the inhaled solutions was determined by measuring the ventilation required to induce a fall in FEV1 of 20% from the prechallenge value. Hypotonic and hypertonic but not isotonic solutions caused a significant fall in FEV1 in the asthmatic subjects. Normal subjects showed no response to either distilled water or 3.6% saline, the only solutions with which they were challenged. The method used for this challenge is rapid, simple, and inexpensive and provides a new means of diagnosing non-immunologically mediated bronchial hyperreactivity.  相似文献   

19.
20.
不同甘蔗品种叶片气孔对水分胁迫的响应   总被引:2,自引:0,他引:2  
干旱是甘蔗面临最主要的环境胁迫之一,为了解不同甘蔗品种在干旱胁迫时的气孔响应,该研究以F172、GT21、YT93/159和 YL6四个抗旱性有显著差异的甘蔗品种为材料,采用桶栽,在伸长期进行四种不同程度的干旱胁迫(不浇水)处理:土壤持水量在①65%~70%为轻度干旱;②45%~50%为中度干旱;③25%~30%为重度干旱;④以土壤含水量为75%为对照(CK).检测不同品种不同处理甘蔗的叶片相对持水量变化,并利用扫描电镜技术观察甘蔗叶片下表皮气孔特性.结果表明:在干旱胁迫下,四个甘蔗品种叶片气孔导度急剧下降,重度干旱时耐旱性强的 F172和 GT21的气孔导度低于耐旱性弱的 YT93/159和 YL6的;复水后3 d,F172和 GT21的气孔导度上升至82.07和88.85 mmol·m-2·s-1,而 YT93/159和 YL6的仅有18.88和33.08 mmol·m-2·s-1.干旱还导致气孔下陷、闭合,气孔器的长、宽明显减小,且品种间气孔器长度变化差异显著;干旱胁迫下气孔密度增大,尤以耐旱性最强的 F172在重度干旱时达到显著差异.重度干旱时 F172与GT21的气孔闭合百分比是 YT93/159和 YL6近3~4倍.在水分胁迫下,叶片相对含水量降低,但 F172和GT21在重度干旱时仍可以保持相对较高的含水量,其它两个品种相对较低,尤以 YT93/159的最低.在复水后叶片含水量都有所恢复.这些研究结果表明不同甘蔗品种抗旱能力与叶片气孔特性和含水量密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号