首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics in batch culture of the acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The fastest initial growth and transition from an acid to a solvent metabolism occurs on glucose, with a final 62 g/L glucose conversion. On xylose, an initial slower growth rate and a longer metabolic transition result in higher cellular and acids concentration, thus in a level of fermented sugar limited to 47 g/L. Batch fermentations on mixtures of glucose and xylose show that both sugars can be fermented, with a higher rate for glucose. However, xylose fermentation is inducible and inhibited at glucose level above 15 g/L. Mixtures of glucose and xylose yield the highest amount of fermented sugars, up to 68 g/L, as a result of both a fast metabolic transition on glucose and a strong acid reconsumption on xylose. In all cases, solvent production is triggered at a total acid concentration between 4 and 5 g/L, whereas the final inhibition of the fermentation takes place at a total butanol and acid concentration between 18 and 20 g/L.  相似文献   

2.
Clostridium acetobutylicum exhibited diauxie growth in the presence of mixtures of glucose and xylose. Both glucose- and xylose-grown cells had a glucose uptake activity. On the other hand, growth on xylose was associated with the induction of a xylose permease activity, which was repressed by glucose in xylose-induced cells. The rate of sugar uptake with increasing sugar concentrations showed saturation kinetics with an apparent Km of 1.25 X 10(-5) M for glucose and 5 X 10(-3) M for xylose. Concomitant with the production of solvents, the activities of the glucose and xylose transport systems decreased. Among the main products of fermentation, butanol was shown to be a potent inhibitor of the growth of the organism and of the rate of sugar uptake as well as of sugar incorporation into cell materials. These inhibitory effects of butanol were more pronounced in xylose-grown cells than in glucose-grown cells. Butanol completely inhibited growth at a concentration of 14 g/liter for cultures growing on glucose and 8 g/liter for cultures growing on xylose. Concentrations of 7 and 10.5 g/liter of butanol caused a 50% inhibition of the xylose and glucose incorporations into cell materials. These inhibitory levels of butanol were found in typical glucose or xylose fermentation.  相似文献   

3.
End product inhibition can be reduced by the in situ removal of inhibitory fermentation products as they form. Extractive fermentation, in which an immiscible organic solvent is added to the fermentor in order to extract inhibitory products, was applied to the acetone-butanol fermentation. Six solvents or solvent mixtures were tested in batch extractive fermentations: kerosene, 30 wt% tetradecanol in kerosene, 50 wt% dodecanol in kerosene, oleyl alcohol, 50 wt% oleyl alcohol in a decane fraction and 50 wt% oleyl alcohol in benzyl benzoate. The best results were obtained with oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate. In normal batch fermentation of Clostridium acetobutylicum, glucose consumption is limited to about 80 kg/m3 due to the accumulation of butanol in the broth. In extractive fermentation using oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate, over 100 kg/m3 of glucose can be fermented. Removal of butanol from the broth as it formed also increased the rate of butanol production. Maximum volumetric butanol productivity was increased by as much as 60% in extractive fermentation compared to batch fermentation. Butanol productivities obtained in extractive fermentation compare favorably with other in situ product removal fermentations.  相似文献   

4.
Clostridium acetobutylicum exhibited diauxie growth in the presence of mixtures of glucose and xylose. Both glucose- and xylose-grown cells had a glucose uptake activity. On the other hand, growth on xylose was associated with the induction of a xylose permease activity, which was repressed by glucose in xylose-induced cells. The rate of sugar uptake with increasing sugar concentrations showed saturation kinetics with an apparent Km of 1.25 X 10(-5) M for glucose and 5 X 10(-3) M for xylose. Concomitant with the production of solvents, the activities of the glucose and xylose transport systems decreased. Among the main products of fermentation, butanol was shown to be a potent inhibitor of the growth of the organism and of the rate of sugar uptake as well as of sugar incorporation into cell materials. These inhibitory effects of butanol were more pronounced in xylose-grown cells than in glucose-grown cells. Butanol completely inhibited growth at a concentration of 14 g/liter for cultures growing on glucose and 8 g/liter for cultures growing on xylose. Concentrations of 7 and 10.5 g/liter of butanol caused a 50% inhibition of the xylose and glucose incorporations into cell materials. These inhibitory levels of butanol were found in typical glucose or xylose fermentation.  相似文献   

5.
Summary The production of solvent by Clostridium acetobutylicum was studied, using fed-batch fermentations. Different specific rates of carbohydrate utilisation were obtained by variations in feeding rates of sugar. At slow catabolic rates of sugar, addition of acetic acid or butyric acid, alone or together, increased the rate of the metabolic transition by a factor 10 to 20, the amount of solvents by a factor 6 and the percentage of fermented glucose to solvents by a factor 3. The same results were obtained with both glucose and xylose fermentations. Depending on the rates of growth, butanol production began at acid levels of 3–4 g·l-1 for fast metabolism and at acid levels of 8–10 g·l-1 for slow metabolism. Associated with slow metabolism, reassimilation of acids required values as high as 6.5 g·l-1 of acetic acid and 7.5 g·l-1 of butyric acid. At a high rate of metabolism, acetic and butyric acids were reassimilated at concentrations of 4.5 g·l-1.  相似文献   

6.
Solventogenic clostridia are well-known since almost a century due to their unique capability to biosynthesize the solvents acetone and butanol. Based on recently developed genetic engineering tools, a targeted 3-hydroxybutyryl-CoA dehydrogenase (Hbd)-negative mutant of Clostridium acetobutylicum was generated. Interestingly, the entire butyrate/butanol (C4) metabolic pathway of C. acetobutylicum could be inactivated without a severe growth limitation and indicated the general feasibility to manipulate the central fermentative metabolism for product pattern alteration. Cell extracts of the mutant C. acetobutylicum hbd::int(69) revealed clearly reduced thiolase, Hbd and crotonase but increased NADH-dependent alcohol dehydrogenase enzyme activities as compared to the wildtype strain. Neither butyrate nor butanol were detected in cultures of C. acetobutylicum hbd::int(69), and the formation of molecular hydrogen was significantly reduced. Instead up to 16 and 20 g/l ethanol were produced in glucose and xylose batch cultures, respectively. Further sugar addition in glucose fed-batch fermentations increased the ethanol production to a final titer of 33 g/l, resulting in an ethanol to glucose yield of 0.38 g/g.  相似文献   

7.
Extractive acetone-butanol-ethanol (ABE) fermentation was carried out successfully using pervaporation and a low-acid-producing Clostridium acetobutylicum B18. A pervaporation module with 0.17 m(2) of surface area was made of silicone membrane of 240 mum thickness. Pervaporation experiments using make-up solutions showed that butanol and acetone fluxes increased linearly with their concentrations in the aqueous phase. Fickian diffusion coefficients were constants for fixed air flow rates, and increased at higher sweep air flow rates. During batch and fed-batch fermentations, pervaporation at an air flow rate of 8 L/min removed butanol and acetone efficiently. Butanol concentration was maintained below 4.5 g/L even though Clostridium acetobutylicum B18 produced butanol steadily. Pervaporation could not remove organic acids efficiently, but organic acids did not accumulate because strain B18 produced little organic acid and recycled added organic acids efficiently. With pervaporation, glucose consumption rate increased compared to without pervaporation, and up to 160 g/L of glucose was consumed during 80 h. Cell growth was not inhibited by possible salt accumulation or oxygen diffusion through the silicone tubing. The culture volume was maintained relatively constant during fed-batch operation because of an offsetting effect of water and product removal by pervaporation and addition of nutrient supplements. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
丙酮丁醇梭菌发酵菊芋汁生产丁醇   总被引:4,自引:0,他引:4  
对丙酮丁醇梭菌Clostridium acetobutylicum L7发酵菊芋汁酸水解液生产丁醇进行了初步研究。实验结果表明,以该水解液为底物生产丁醇,不需要添加氮源和生长因子。当水解液初始糖浓度为48.36 g/L时,其发酵性能与以果糖为碳源的对照组基本相同,发酵终点丁醇浓度为8.67 g/L,丁醇、丙酮和乙醇的比例为0.58∶0.36∶0.06,但与以葡萄糖为碳源的对照组相比,发酵时间明显延长,表明该菌株葡萄糖转运能力强于果糖。当水解液初始糖浓度提高到62.87 g/L时,发酵终点残糖浓度从3.09 g/L增加到3.26 g/L,但丁醇浓度却提高到11.21 g/L,丁醇、丙酮和乙醇的比例相应为0.64∶0.29∶0.05,表明适量糖过剩有助于C.acetobutylicum L7胞内代谢从丙酮合成向丁醇合成途径调节;继续提高水解液初始糖浓度,发酵终点残糖浓度迅速升高,丁醇生产的技术经济指标受到明显影响。  相似文献   

9.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

10.
11.
Batch fermentation of 60g/l glucose/xylose mixture by Clostridium acetobutylicum ATCC 824 was investigated on complex culture medium. Different proportions of mixtures, ranged between 10 and 50g of each sugar/l, were fermented during pH control at 4.8 (optimum pH for solventogenesis) or during CaCO3 addition. Using xylose-pregrown cells and pH control, an important amount of xylose was left over at the end of the fermentation when the glucose concentration was higher than that of xylose. The addition of 10g of CaCO3/l (to prevent the pH dropping below 4.8) increased xylose uptake: a substantial decrease of residual xylose was observed when xylose-pregrown cells as well as glucose-pregrown cells were used as inoculum for all the mixture proportions studied. MgCO3 (Mg2+-containing compound) and CaCl2 (Ca2+-containing compound) reduced residual xylose only during pH control at 4.8 by NaOH addition. As butanol is the major limiting factor of xylose uptake in C. acetobutylicum, fermentations were carried out with or without CaCO3 in butanol-containing media or in iron deficient media (under iron limitation, butanol synthesis occurred early and could inhibit xylose uptake). Results showed that an excess of CaCOCaCO3 could increase butanol tolerance which resulted in an increase in xylose utilization. This positive effect seem to be specific to Ca2+- or Mg2+-containing compounds, going beyond the buffering effect of carbonate.  相似文献   

12.
In comparison to the different fermentation modes for the production of acetone, butanol and ethanol (ABE) researched to date, the continuous fermentation is the most economically favored. Continuous fermentation with two or more reactor cascade is reported to be the most efficient as it results in a more stable solvent production process. In this work, it is shown that a continuous (first-stage) reactor coupled to a repeated fed-batch (second stage) is superior to batch and fed-batch fermentations, including two-stage continuous fermentation. This is due to the efficient catalyst use, reported through the specific product rate and rapid glucose consumption rate. High solvents are produced at 19.4 g(ABE) l?1, with volumetric productivities of 0.92 g(butanol) l?1 h?1 and 1.47 g(ABE) l ?1 h?1. The bioreactor specific productivities of 0.62 and 0.39 g g?1(cdw) h?1 obtained show a high catalyst activity. This new process mode has not been reported before in the development of ABE fermentation and it shows great potential and superiority to the existing fermentation methods.  相似文献   

13.
Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.  相似文献   

14.
利用甜菜糖蜜补料发酵生产丁醇   总被引:1,自引:1,他引:1  
从土壤中分离出1株适合利用甜菜糖蜜发酵生产丁醇的丙酮丁醇梭菌(Clostridium acetobutylicum)2N,通过优化发酵条件,得到最适发酵温度为33℃,玉米浆最适添加量为15g/L,发现甜菜糖蜜中还原糖质量浓度高于50g/L时影响菌株的生长和溶剂生产。以补料分批发酵方式降低底物抑制,33℃发酵48h后,丁醇和总溶剂的质量浓度分别达到14.15g/L和19.65g/L,丁醇质量分数超过70%。  相似文献   

15.
Oxygen-reducing membrane fragments obtained from Escherichia coli were used with Clostridium acetobutylicum (C. acetobutylicum) to provide an oxygen-free microenvironment for the conversion of glucose to acetone, butanol, and ethanol (ABE). The batch fermentation of suspended C. acetobutylicum NRRL-B-643 and its ability to produce solvents in the presence of membranes as the oxygen-elimination agent are described and compared with the conventional sparging technique used to maintain anaerobiosis. The use of membrane fragments to remove oxygen for fermentation by C. acetobutylicum was successful and gave slightly improved results over the use of sparing with regard to lag, biomass, and solvent production (e.g., final butanol concentration of 3.25 and 2.7 g/L, respectively). Solvent production is also reported for a continuous columnar reactor with coimmobilized cells and membranes in kappa-carrageenan gel beads and air-saturated liquid feed.  相似文献   

16.
Acetone, butanol, and ethanol (ABE) were produced from corn fiber arabinoxylan (CFAX) and CFAX sugars (glucose, xylose, galactose, and arabinose) using Clostridium acetobutylicum P260. In mixed sugar (glucose, xylose, galactose, and arabinose) fermentation, the culture preferred glucose and arabinose over galactose and xylose. Under the experimental conditions, CFAX (60 g/L) was not fermented until either 5 g/L xylose or glucose plus xylanase enzyme were added to support initial growth and fermentation. In this system, C. acetobutylicum produced 9.60 g/L ABE from CFAX and xylose. This experiment resulted in a yield and productivity of 0.41 and 0.20 g/L x h, respectively. In the integrated hydrolysis, fermentation, and recovery process, 60 g/L CFAX and 5 g/L xylose produced 24.67 g/L ABE and resulted in a higher yield (0.44) and a higher productivity (0.47 g/L x h). CFAX was hydrolyzed by xylan-hydrolyzing enzymes, and ABE were recovered by gas stripping. This investigation demonstrated that integration of hydrolysis of CFAX, fermentation to ABE, and recovery of ABE in a single system is an economically attractive process. It is suggested that the culture be further developed to hydrolyze CFAX and utilize all xylan sugars simultaneously. This would further increase productivity of the reactor.  相似文献   

17.
有机酸代谢途径在丁醇发酵过程中具有重要的作用,对细胞内碳流的分配和产物的合成影响显著。在7 L厌氧发酵罐中,进行了间歇添加乙酸或丁酸的发酵实验。结果表明,乙、丁酸的添加显著提高了总溶剂的生产效率,分别提高了47.1%和39.2%;此外,丁醇/丙酮比在添加丁酸的批次中提高了21.7%,在添加乙酸的批次中降低了16.2%;厌氧瓶中的发酵实验也证实了以上结果。有机酸代谢计算的结果表明,乙、丁酸的添加基本上阻断了相应有机酸闭环的吸收途径。基于相关报道和代谢计算结果,构建了针对乙、丁酸添加批次的图论模型,并利用该模型对不同发酵条件下的溶剂浓度和丁醇/丙酮比进行了计算。结果表明,该模型很好地预测了实验结果,合理地构建了乙、丁酸添加批次的信号传递线图。  相似文献   

18.
Anaerobic bacteria such as the solventogenic clostridia can ferment a wide range of carbon sources (e.g., glucose, galactose, cellobiose, mannose, xylose, and arabinose) to produce carboxylic acids (acetic and butyric) and solvents such as acetone, butanol, and ethanol (ABE). The fermentation process typically proceeds in two phases (acidogenic and solventogenic) in a batch mode. Poor solvent resistance by the solventogenic clostridia and other fermenting microorganisms is a major limiting factor in the profitability of ABE production by fermentation. The toxic effect of solvents, especially butanol, limits the concentration of these solvents in the fermentation broth, limiting solvent yields and adding to the cost of solvent recovery from dilute solutions. The accepted dogma is that toxicity in the ABE fermentation is due to chaotropic effects of butanol on the cell membranes of the fermenting microorganisms, which poses a challenge for the biotechnological whole-cell bio-production of butanol. This mini-review is focused on (1) the effects of solvents on inhibition of cell metabolism (nutrient transport, ion transport, and energy metabolism); (2) cell membrane fluidity, death, and solvent tolerance associated with the ability of cells to tolerate high concentrations of solvents without significant loss of cell function; and (3) strategies for overcoming poor solvent resistance in acetone and butanol-producing microorganisms.  相似文献   

19.
Summary Three strains ofCl. acetobutylicum and one ofCl. butyricum have been tested for their ability to ferment xylose to butanol. ATCC 824 and NRRL 527 produced 0.28 g solvents/g xylose, while ATCC 8260 and NRRL 594 produced much butyric acid. In 2-stage fermentations in which ATCC 8260 or NRRL 594 acted upon xylose for 12 to 20 h, followed by NRRL 527 for a total of 3 days, yields of solvent were better, 0.32 g/g xylose. Upon fermenting a mixture of sugars simulating sulphite waste liquor 0.36 g solvents/g sugar were obtained. Sugar consumption in both cases was about 96%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号