首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although considerable effort has been devoted to developing Grb2 SH2 domain-binding antagonists, important questions related to ligand specificity, and identification of intracellular targets remain unanswered. In order to begin addressing these issues, the design, synthesis, and evaluation of a novel biotinylated macrocycle are reported that bears biotin functionality at a C-terminal rather than the traditional N-terminal position. With a Grb2 SH2 domain-binding K(eq) value of 3.4 nM, the title macrocycle (5) is among the most potent biotinylated SH2 domain-binding ligands yet disclosed. This should be a useful tool for elucidating physiological targets of certain Grb2 SH2 domain-binding antagonists.  相似文献   

2.
Fluorescence labeling has become a general technique for studying the intracellular accumulation and localization of exogenously administered materials. Reported herein is a low nanomolar affinity Grb2 SH2 domain-binding antagonist that utilizes the environmentally-sensitive nitrobenzoxadiazole (NBD) fluorophore as a naphthyl replacement. This novel agent should serve as a useful tool to visualize the actions of this class of Grb2 SH2 domain-binding antagonists in whole cell systems.  相似文献   

3.
D Park  Y Yun 《Molecules and cells》2001,12(2):244-249
In this paper, we established a modified yeast two-hybrid system, which is specialized for the detection of SH2 domain-binding proteins. The employment of the SH2 domain-tyrosine kinase fusion protein as bait allowed the efficient identification of SH2 domain-binding proteins. The general applicability of the system was tested using various combinations of SH2-kinase fusion bait and prey. The results indicate that the system specifically detected the previously reported in vivo interactions between the SH2 domains and their binding partners. In addition, using this system, we found the interaction between the adaptor protein, Lad, and the SH2 domain of Grb2 or PLC-gamma1. The binding of Lad to Grb2 was further confirmed in mammalian cells by a co-immunoprecipitation study. The conclusion is that the established tyrosine phosphorylation-dependent yeast two-hybrid system provides a novel and efficient way to define the SH2 domain-binding molecules.  相似文献   

4.
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.  相似文献   

5.
Zhang D  Shao C  Hu S  Ma S  Gao Y 《PloS one》2012,7(1):e29902
The Grb7 (growth factor receptor-bound 7) protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2) domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.  相似文献   

6.
Grubbs' olefin metathesis reaction was utilized to prepare a macrocyclic variant of a linear Grb2 SH2 domain antagonist in an attempt to induce a beta-bend conformation known to be required for high affinity binding. In extracellular Grb2 SH2 domain binding assays, the macrocyclic analogue exhibited an approximate 100-fold enhancement in binding potency relative to its linear counterpart. The macrocycle was not as effective in whole cell binding assays as would be expected based on its extracellular binding potency.  相似文献   

7.
The SH2 domain of growth factor receptor-bound protein 2 (Grb2) has been the focus of numerous studies, primarily because of the important roles it plays in signal transduction. More recently, it has emerged as a useful protein to study the consequences of ligand preorganization upon energetics and structure in protein-ligand interactions. The Grb2-SH2 domain is known to form a domain-swapped dimer, and as part of our investigations toward correlating structure and energetics in biological systems, we examined the effects that domain-swapping dimerization of the Grb2-SH2 domain had upon ligand binding affinities. Isothermal titration calorimetry was performed using Grb2-SH2 in both its monomeric and domain-swapped dimeric forms and a phosphorylated tripeptide AcNH-pTyr-Val-Asn-NH(2) that is similar to the Shc sequence recognized by Grb2-SH2 in vivo. The two binding sites of domain-swapped dimer exhibited a 4- and a 13-fold reduction in ligand affinity compared to monomer. Crystal structures of peptide-bound and uncomplexed forms of Grb2-SH2 domain-swapped dimer were obtained and reveal that the orientation of residues V122, V123, and R142 may influence the conformation of W121, an amino acid that is believed to play an important role in Grb2-SH2 ligand sequence specificity. These findings suggest that domain-swapping of Grb2-SH2 not only results in a lower affinity for a Shc-derived ligand, but it may also affect ligand specificity.  相似文献   

8.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.  相似文献   

9.
Synthesis of (2R)-2-carboxymethyl-3-(4-(phosphonomethyl)phenyl) proprionic acid (5) in tert-butyl-protected form (6) and its use for the preparation of a Grb2 SH2 domain-directed tripeptide (8a) is reported. In extracellular ELISA-based assays, 8a exhibits potent Grb2 SH2 domain binding affinity (IC(50)=8 nM). Against cultures of MDA-MB-453 breast cancer cells, which over-express erbB-2 tyrosine kinase, 8a is also antimitogenic at concentrations equivalent to those required to inhibit intracellular association of Grb2 protein with phosphorylated p185(erbB-2) protein (IC(50)=8 microM). Analogue 6 may be useful for the preparation of a variety of phosphatase-stable SH2 domain-directed ligands.  相似文献   

10.
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is co-overexpressed and forms a tight complex with the ErbB2 receptor in a number of breast tumours and breast cancer cell lines. The interaction of Grb7 with the ErbB2 receptor is mediated via its Src homology 2 (SH2) domain. Whilst most SH2 domains exist as monomers, recently reported studies have suggested that the Grb7-SH2 domain exists as a homodimer. The self-association properties of the Grb7-SH2 domain were therefore studied using sedimentation equilibrium ultracentrifugation. Analysis of the data demonstrated that the Grb7-SH2 domain is dimeric with a dissociation constant of approximately 11 M. We also demonstrate, using size-exclusion chromatography, that mutation of phenylalanine 511 to an arginine produces a monomeric form of the Grb7-SH2 domain. This mutation represents the first step in the engineering of a Grb7-SH2 domain with good solution properties for further biophysical and structural investigation.  相似文献   

11.
Vidal M  Liu WQ  Lenoir C  Salzmann J  Gresh N  Garbay C 《Biochemistry》2004,43(23):7336-7344
This paper describes the design of the highest affinity ligands for Grb2 SH3 domains reported so far. These compounds were designed by combining N-alkyl amino acid incorporation in a proline-rich sequence with subsequent dimerization of the peptoid sequence based on structural data and molecular modeling. Optimization of the linker size is discussed, and the N-alkyl amino acid incorporation into both monomeric halves is reported. Because the affinity for Grb2 of the optimized compounds was too high to be measured using the fluorescent modifications that they induce on the Grb2 emission spectrum, a competition assay was developed. In this test, Grb2 is pulled down from a cellular extract by the initial VPPPVPPRRR peptide bound to Sepharose beads. In the presence of competitors, the test quantifies the amount of Grb2 displaced from the beads. It has enabled us to determine a K(i) value in the 10(-10) M range for the highest affinity Grb2 peptoid analogue dimer.  相似文献   

12.
Lung FD  Tsai JY 《Biopolymers》2003,71(2):132-140
The growth factor receptor-bound protein 2 (Grb2) plays an important role in the Ras signaling pathway. Several proteins were found to be overexpressed by oncogenes in the Ras signaling pathway, rendering Grb2 a potential target for the design of antitumor agents. Blocking the interaction between the phosphotyrosine-containing activated receptor and the Src-homology 2 (SH2) domain of Grb2 thus constitutes an important strategy for the development of potential anticancer agents. X-ray, NMR structural investigations, and molecular modeling studies have provided the target structure of Grb2 SH2 domain-alone or complexed with a phosphotyrosine-containing peptide-which is useful for the structure-based design of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain. We review here the variety of approaches to Grb2 SH2 pepide inhibitors developed with the aim of interrupting Grb2 recognition. Inhibitory effects of peptide analogs on the Grb2 SH2 domain and their binding affinities for Grb2 SH2 were determined by ELISA, cell-based assays, or Surface Plasman Resonance (SPR) technology. Results of theses studies provide important information for further modifications of lead peptides, and should lead to the discovery of potent peptides as anticancer agents.  相似文献   

13.
The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity.  相似文献   

14.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Oak SA  Russo K  Petrucci TC  Jarrett HW 《Biochemistry》2001,40(37):11270-11278
Syntrophins have been proposed to serve as adapter proteins. Syntrophins are found in the dystrophin glycoprotein complex (DGC); defects in the constituents of this complex are linked to various muscular dystrophies. Blot overlay experiments demonstrate that alpha-dystroglycan, beta-dystroglycan, and syntrophins all bind Grb2, the growth factor receptor bound adapter protein. Mouse alpha1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to also bind Grb2 in a Ca2+-independent manner. This binding was localized to the proline rich sequences adjacent to and overlapping with the N-terminal pleckstrin homology domain (PH1). Grb2 bound syntrophin with an apparent KD of 563 +/- 15 nM. Grb2-C-SH3 domain bound syntrophin with slightly higher affinity than Grb2-N-SH3 domain. Crk-L, an SH2/SH3 protein of similar domain structure but different specificity, does not bind these syntrophin sequences.  相似文献   

16.
The growth factor receptor-bound protein 2 (Grb2) is an SH2 domain-containing docking module that participates in the signaling of numerous oncogenic growth factor receptor protein-tyrosine kinases (PTKs). Presented herein is a 5-methylindolyl-containing macrocyclic tetrapeptide mimetic (5) that binds to Grb2 SH2 domain protein with K(d)=75 pM. This represents the highest affinity yet reported for a synthetic inhibitor against any SH2 domain. In whole cell assays this novel analogue is able to effectively block the association of Grb2 to cognate cytoplasmic erbB-2 at IC(50)<10nM without prodrug derivatization or the addition of carrier peptide motifs. Anti-mitogenic effects against erbB-2-dependent breast cancers are achieved at non-cytotoxic concentrations (IC(50)=0.6 microM). Macrocycle 5 may be representative of a new class of therapeutically relevant Grb2 SH2 domain-directed agents.  相似文献   

17.
Adaptor proteins Grb7 and Grb2 have been implicated as being 2 potential therapeutic targets in several human cancers, especially those that overexpress ErbB2. These 2 proteins contain both a SH2 domain (Src homology 2) that binds to phosphorylated tyrosine residues contained within ErbB2 and other specific protein targets. Two assays based on enzyme-linked immunosorbent assay and fluorescence polarization methods have been developed and validated to find and rank inhibitors for both proteins binding to the pY(1139). Fluorescence polarization assays allowed the authors to determine quickly and reproducibly affinities of peptides from low nanomolar to high micromolar range and to compare them directly for Grb7 and Grb2. As a result, the assays have identified a known peptidomimetic Grb2 SH2 inhibitor (mAZ-pTyr-(alphaMe)pTyr-Asn-NH(2)) that exhibits the most potent affinity for the Grb7 SH2 domain described to date.  相似文献   

18.
Three monocarboxylic-containing analogues, O-carboxymethyltyrosine (cmT, 5), 4-(carboxymethyl)phenylalanine (cmF, 6), and 4-(carboxydifluoromethyl)phenylalanine (F2cmF, 7) were utilized as phosphotyrosyl (pTyr) replacements in a high affinity B-bend mimicking platform, where they exhibited IC50 values of 2.5 microM, 65 microM and 28 microM, respectively, in a Grb2 SH2 domain Biacore binding assay. When a terminal N(alpha)-oxalyl axillary was utilized to enhance ligand interactions with a critical SH2 domain Arg67 residue (alphaA-helix), binding potencies increased from 4- to 10-fold, resulting in submicromolar affinity for cmF (IC50 = 0.6 microM) and low micromolar affinity for F2cmF (IC50 = 2 microM). Cell lysate binding studies also showed inhibition of cognate Grb2 binding to the p185erbB-2 phosphoprotein in the same rank order of potency as observed in the Biacore assay. These results indicate the potential value of cmF and F2cmF residues as pTyr mimetics for the study of Grb2 SH2 domains and suggest new strategies for improvements in inhibitor design.  相似文献   

19.
20.
D Cussac  M Frech    P Chardin 《The EMBO journal》1994,13(17):4011-4021
Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号