首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Azotobacter species, free-living nitrogen-fixing bacteria, have been used as biofertilizers to improve the productivity of non-leguminous crops, including rice, due to their various plant growth-promoting traits. The purposes of this study were to characterize Azotobacter species isolated from rice rhizospheres in Taiwan and to determine the relationship between the species diversity of Azotobacter and soil properties. A total of 98 Azotobacter isolates were isolated from 27 paddy fields, and 16S rRNA gene sequences were used to identify Azotobacter species. The characteristics of these Azotobacter strains were analyzed including carbon source utilization and plant growth-promoting traits such as nitrogen fixation activity, indole acetic acid production, phosphate-solubilizing ability, and siderophore secretion. Of the 98 strains isolated in this study, 12 were selected to evaluate their effects on rice growth. Four species of Azotobacter were identified within these 98 strains, including A. beijerinckii, A. chroococcum, A. tropicalis, and A. vinelandii. Of these four species, A. chroococcum was predominant (51.0%) but A. beijerinckii had the highest level of nucleotide diversity. Strains within individual Azotobacter species showed diverse profiles in carbon source utilization. In addition, the species diversity of Azotobacter was significantly related to soil pH, Mn, and Zn. Members of the same Azotobacter species showed diverse plant growth-promoting traits, suggesting that the 98 strains isolated in this study may not equally effective in promoting rice growth. Of the 12 strains evaluated, A. beijerinckii CHB 461, A. chroococcum CHB 846, and A. chroococcum CHB 869 may be used to develop biofertilizers for rice cultivation because they significantly promoted rice growth. This study contributes to the selection of suitable Azotobacter strains for developing biofertilizer formulations and soil management strategies of Azotobacter for paddy fields.  相似文献   

2.
Declining food production in African agroecosystems is attributable to changes in weather patterns, soil infertility and limited farming inputs. The exploitation of plant growth-promoting soil microbes could remedy these problems. Such microbes include Azotobacter; free-living, nitrogen-fixing bacteria, which confer stress tolerance, avail phytohormones and aid in soil bioremediation. Here, we aimed to isolate, characterize and determine the biodiversity of native Azotobacter isolates from soils in semi-arid Eastern Kenya. Isolation was conducted on nitrogen-free Ashby''s agar and the morphological, biochemical and molecular attributes evaluated. The isolates were sequenced using DNA amplicons of 27F and 1492R primers of the 16S rRNA gene loci. The Basic Local Alignment Search Tool (BLASTn) analysis of their sequences revealed the presence of three main Azotobacter species viz., Azotobacter vinelandii, Azotobacter salinestris and Azotobacter tropicalis. Kitui County recorded the highest number of recovered Azotobacter isolates (45.4%) and lowest diversity index (0.8761). Tharaka Nithi County showed the lowest occurrence (26.36%) with a diversity index of (1.057). The diversity was influenced by the soil pH, texture and total organic content. This study reports for the first time a wide diversity of Azotobacter species from a semi-arid agroecosystem in Kenya with potential for utilization as low-cost, free-living nitrogen-fixing bioinoculant.  相似文献   

3.
The purposes of this study were to evaluate the phosphate solubilization activity of bacteria isolated from the rhizosphere of rice paddy soil in northern Iran, and to study the effect of temperature, NaCl and pH on the growth of these isolates by modeling. Three of the most effective strains from a total of 300 isolates were identified and a phylogenetic analysis was carried out by 16S rDNA sequencing. The isolates were identified as Pantoea ananatis (M36), Rahnella aquatilis (M100) and Enterobacter sp. (M183). These isolates showed multiple plant growth-promoting attributes such as phosphate solubilization activity and indole-3-acetic acid (IAA) production. The M36, M100 and M183 isolates were able to solubilize 172, 263 and 254 µg ml?1 of Ca3(PO4)2 after 5 days of growth at 28 °C and pH 7.5, and to produce 8.0, 2.0 and 3.0 μg ml?1 of IAA when supplemented with l-tryptophan (1 mg ml?1) for 72 h, at 28 °C and pH 7.0, respectively. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium and there was an inverse relationship between pH and solubilized P (r = ?0.98, P < 0.0952). There were no significant differences among isolates in terms of acidity tolerance based on their confidence limits as assessed by segmented model analysis and all isolates were able to grow at pH 4.3–11 (with optimum at 7.0–7.5). Based on a sigmoidal trend of a three-parameter logistic model, the salt concentration required for 50 % inhibition was 8.15, 6.30 and 8.23 % NaCl for M36, M100 and M183 isolates, respectively. Moreover, the minimum and maximum growth temperatures estimated by the segmented model were 5.0 and 42.75 °C for M36, 12.76 and 40.32 °C for M100, and 10.63 and 43.66 °C for M183. The three selected isolates could be deployed as inoculants to promote plant growth in an agricultural environment.  相似文献   

4.
This study highlights some of the effects of the application of Azotobacter chroococcum (INIFAT5 strain) on in vitro-pineapple plantlets during acclimatization. The bacteria were sprayed immediately after transplanting to the ex vitro environment; the plants were then sprayed every 4 week. Subsequently (4 months) the evaluated variables included plantlet fresh and dry weights, leaf and root lengths, and composition of minerals, amino-acids, carbohydrates and proteins. Photosynthesis indicators were also evaluated. Significant effects of the application of Azotobacter over pineapple plantlets during acclimatization were observed in the mineral, amino-acid, carbohydrate and protein levels, as well as, in the photosynthesis indicators. Contrastingly, plant growth parameters showed modest increases caused by the bacteria, although they were statistically significant. Looking into specific minerals, the following significant effects of Azotobacter should be highlighted: increased levels of nitrogen, phosphorous, potassium, magnesium, copper and zinc. Moreover, contents of all amino-acids recorded showed significant increases in their levels in sprayed plantlets. Carbohydrates were also increased in leaves of plantlets bio-fertilized with the bacteria, mainly sucrose and fructose. Chlorophyll b levels were also significantly increased by Azotobacter. The biofertilizer did not modify levels of calcium, iron or manganese.  相似文献   

5.
Bacteria-mediated plant growth promotion is a well-established and complex phenomenon that is often achieved by the activities of more than one plant growth-promoting (PGP) trait, which may not always be present in a single organism. Biofilms developed using a combination of two organisms with useful plant growth-promoting rhizobacteria (PGPR) traits may provide a definite advantage. In this context, in vitro studies were conducted evaluating the PGP traits of novel biofilms developed using Trichoderma as matrix and agriculturally important bacteria (Azotobacter chroococcum, Pseudomonas fluorescens and Bacillus subtilis) as partners. Such biofilms exhibited higher values for various biochemical attributes as compared to the individual organisms and dual cultures. TrichodermaBacillus and TrichodermaPseudomonas biofilms exhibited enhanced antifungal activity, ammonia, indole acetic acid (IAA) and siderophore production, as compared to the other treatments. TrichodermaAzotobacter biofilm recorded the highest nitrogenase activity and 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. The synergism in terms of the PGP traits in the biofilms revealed their promise as superior PGP inoculants.  相似文献   

6.
Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4?mg-1 bacteria h-1). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.  相似文献   

7.
We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (?5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.  相似文献   

8.
Endophytic bacteria associated with sweet potato plants (Ipomoea batatas (L.) Lam.) were isolated, identified and tested for their ability to fix nitrogen, produce indole acetic acid (IAA), and exhibit stress tolerance. Eleven different strains belonging to the genera, Enterobacter, Rahnella, Rhodanobacter, Pseudomonas, Stenotrophomonas, Xanthomonas and Phyllobacterium, were identified. Four strains were shown to produce IAA (a plant growth hormone) and one strain showed the ability to grow in nitrogen free medium and had the nitrogenase subunit gene, nifH. To determine if IAA production by the endophytes had any role in protecting the cells against adverse conditions, different stress tests were conducted. The IAA producer grew well in the presence of some antibiotics, UV and cold treatments but the response to pH, osmotic shock, thermal and oxidative treatments was the same for both the IAA producer and the no IAA producer. To determine if IAA produced by the strains was biologically relevant to plants, cuttings of poplar were inoculated with the highest IAA producing strain. The inoculated cuttings produced roots sooner and grew more rapidly than uninoculated cuttings. These studies indicate that endophytes of sweet potato plants are beneficial to plant growth.  相似文献   

9.
Rocket line immunoelectrophoresis was used to study the taxonomy ofAzotobacter andAzomonas assessed by reaction with antiserum to the AVO2 strain ofAzotobacter. Forty-five cultures, comprising seventeen species in five genera, showed that antigen “β”, like high-titer somatic agglutination, was restricted to all 11 strains ofAzotobacter vinelandii and to one strain which has been namedAzotobacter macrocytogenes (10EM). A thermoresistant antigen (“γ”) was found to be shared by all strains and species ofAzotobacter andAzomonas investigated.  相似文献   

10.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   

11.
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.  相似文献   

12.
Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365T, Streptomyces rochei NBRC 12908T and Streptomyces plicatus NBRC 13071T, with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and l-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg l-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.  相似文献   

13.
Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-β-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-β-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.  相似文献   

14.
Several processes that promote plant growth were investigated in endophytic and symbiotic bacteria isolated from cowpea and siratro nodules and also in bacterial strains recommended for the inoculation of cowpea beans. The processes verified in 31 strains were: antagonism against phytopathogenic fungi, free-living biological nitrogen fixation, solubilization of insoluble phosphates and indole acetic acid (IAA) production. The resistance to antibiotics was also assessed. Sequencing of the partial 16S rRNA gene was performed and the strains were identified as belonging to different genera. Eight strains, including some identified as Burkholderia fungorum, fixed nitrogen in the free-living state. Eighteen strains exhibited potential to solubilize calcium phosphate, and 13 strains could solubilize aluminum phosphate. High levels of IAA production were recorded with l-tryptophan addition for the strain UFLA04-321 (42.3 μg mL?1). Strains highly efficient in symbiosis with cowpea bean, including strains already approved as inoculants showed the ability to perform other processes that promote plant growth. Besides, these strains exhibited resistance to several antibiotics. The ability of the nitrogen-fixing bacteria to perform other processes and their adaptation to environmental conditions add value to these strains, which could lead to improved inoculants for plant growth and environmental quality.  相似文献   

15.
Two strains of a psychrophilic basidiomycetous yeast species belonging to the genus Mrakia were isolated from a melt-pool mat community, on an ice island located in Disraeli Fjord, Ellesmere Island in the Canadian Arctic. Analysis of the large subunit rDNA D1/D2 domain and internal transcribed spacer region sequences indicated that these strains represent a novel species, and the name Mrakia arctica sp. nov. is proposed. This new species could grow at sub-zero temperatures and in vitamin-free media. Moreover, lipase and cellulase enzymes of M. arctica were strongly active even at ?3 °C. These results suggest an important role for M. arctica in the biogeochemical cycle of glacial ecosystems.  相似文献   

16.
Increase in soil salinity adversely affects the metabolism and lowers the yield of rice (Oryza sativa L). Application of plant growth-promoting rhizobacteria (PGPR) to ameliorate the effects of salt stress on sensitive rice can be both effective and sustainable. In this study, 20 bacterial strains were isolated from the soil of saline-prone regions of Satkhira, north of the Sundarbans in coastal Bangladesh. Three bacteria among these grew well in the presence of 3 M salt (NaCl) and were Gram positive and non-motile. Their 16S rRNA sequence revealed that they belong to the Halobacillus genus. Two of them were identified as Halobacillus dabanensis strain SB-26 and the other one as Halobacillus sp. GSP 34. A couple of mechanisms by which these microbes could play beneficial role if associated with plants, such as nitrogen fixation and indole acetic acid (IAA) production, were identified. The two bacterial strains showed positive results for nitrogen fixation and indole acetic acid (IAA) activity under salt stress. Their effect on the physiology and yield of a farmer popular but sensitive BRRI dhan 28 rice variety was investigated under both control and salt stress. At the seedling stage, inoculated plants had significantly greater root length, shoot height, total weight, chlorophyll content, but lower electrolyte leakage both in control and salt stress (0, 40, and 80 mM). Performance of the plants was even better when both bacteria were used in combination. At the reproductive stage, the plants also showed better phenology in presence of the inoculated bacteria. Under stress (50 mM NaCl), these plants showed significantly greater plant height, lower spikelet damage, and yield reduction compared to untreated plants. The identified Halobacillus strains can therefore be used to improve the yield of rice by exploiting their plant growth promotion activities in coastal areas affected by moderate salinity, such as those with an ionic conductivity of up to 5 dS m?1.  相似文献   

17.
The N2-fixing bacterium, Azotobacter vinelandii, was used both in single culture and in combination with activated sludge culture for the treatment of nitrogen-deficient wastewaters as an alternative to external nitrogen supplementation. Azotobacter-supplemented activated sludge culture removed more total organic carbon (TOC), especially at low initial TN/COD (total nitrogen/chemical oxygen demand) ratios, than the Azotobacter-free culture. Up to 95% TOC removal efficiencies were obtained with synthetic media of TN/COD<4 when Azotobacter was used singly or with activated sludge. The results indicated clear advantage of using Azotobacter in the activated sludge to improve TOC removal from nitrogen-deficient wastewaters.  相似文献   

18.
Bud emergence and shoot growth from adult phase citrus nodal cultures were studied using Citrus mitis (calamondin), Citrus paradisi (grapefruit), and Citrus sinensis (sweet orange). The effects of 6-benzyladenine (BA), indole 3-acetic acid (IAA), and citrus type on shoot quality and growth of mature bud explants from greenhouse grown trees were determined using a 2-component mixture-amount × citrus type experiment. BA increased shoot number and IAA improved shoot growth. The best shoot quality (fewer shoots but large shoots) was obtained with 1 μM IAA for calamondin, 15.5 μM IAA for sweet orange, and 30 μM IAA for grapefruit. Grapefruit exhibited substantial leaf abscission compared to calamondin and sweet orange. Four factors (AgNO3, silver thiosulphate (STS), CaNO3, or gelling) were screened individually for their efficacy in reducing leaf abscission. Five factors (AgNO3, gelling, MS ion concentration, plant growth regulator and venting) were investigated to identify potential combinations for reducing leaf abscission and maximizing shoot growth and bud emergence. The factor combination identified as most effective in minimizing leaf drop, promoting shoot growth, and maximizing bud emergence for grapefruit was 2 mg l?1 AgNO3, Gelrite, 1 × MS ion concentration, 30 μM IAA, and vented.  相似文献   

19.
In studying plant colonization by inoculated Fusarium oxysporum endophytes, it is important to be able to distinguish inoculated isolates from saprophytic strains. In the current study, F. oxysporum isolates were transformed with the green (GFP) and red fluorescent protein (DsRed) genes, and benomyl- and chlorate-resistant mutant isolates were also developed. The benomyl- and chlorate-resistant mutants, and the fluorescently labelled transformants, were able to grow on potato dextrose agar amended with 20 mg Benlate® l?1, 30 g chlorate l?1 and 150 μg hygromycin ml?1, respectively. Single spores of all mutants remained stable after several transfers on non-selective media. Most mutants and transformants produced colony diameters that did not differ significantly from that of their wild-type progenitors after 7 days of growth on non-selective media. Few mutants, however, had growth rates that were either slower or faster than for their wild-types. Plant colonization studies showed that root and rhizome tissue colonization by most benomyl- and chlorate-resistant mutants was similar to that of their wild-type isolates. Unlike GFP transformants, DsRed transformants were difficult to visualize in planta. Both the mutants and transformants can be used for future studies to investigate colonization, distribution and survival of biocontrol F. oxysporum endophytes in banana plants.  相似文献   

20.
The Arno goby Padogobius nigricans is an endemic species to Central Italy. The populations of this species are in sharp decline due to habitat modifications and potentially competition with Padanian goby Padogobius bonelli, an endemic species to Northern Italy, introduced in some watercourses of Central Italy. The purposes of this paper were to analyze dietary composition of the two species, determine the degree of overlap in their diets and investigate the feeding ecology of P. nigricans in terms of absence and presence of the alien species. Specimens were collected from the Aggia River, a tributary of Tiber River. Gut contents were analyzed and prey items were identified to the lowest recognizable taxa and counted. All the obtained results showed that P. nigricans and P. bonelli in the Aggia River share a similar diet. Both species fed extensively on Chironomids and no statistically significant ontogenetic changes in feeding habits were found. A high degree of diet overlap was observed. Diet of P. nigricans and P. bonelli also included fish and where the species live in syntopy, individuals belonging to Padogobius genus were found in stomach, suggesting that mutual predation may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号