首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following method of staining bacterial flagella is ecommended for use on smears made from suspensions of 10 to 16-tour agar slant cultures, incubated 30 minutes at 37°C before spreadng on thoroly cleaned and named slides:
  1. Cover with fixative (100 cc. of 1/4 sat. aqu. solution picric acid, with 5 g. tannic acid and 7.5 g. ferrous sulfate).
  2. Wash with tap water, dry and cover with Fontana spirochaete stain; heat to steaming and allow to act for 1 to 2 minutes. Wash in ap water. The stain is prepared as follows: To 25 cc. 2% AgNO3 add dilute ammonia till the precipitate which forms redissolves; then add more AgNO3 till a faint turbidity results. A clear solution is useess.
  相似文献   

2.
Nerve fibers, in organs fixed with Bouin's fluid, are usually refractive to the Davenport silver technic. The axons, however, can be successfully stained if the sections, on slides, are given a preliminary treatment with concentrated pyridine (1 hour), then a 24-hour bath of ammoniated alcohol (99 cc. 80% alcohol, 1 cc 28% ammonium hydroxide) and an interval in 40% aqueous silver nitrate (6-8 hours) before being immersed in the acidified alcoholic silver solution of Davenport. Following the silvering, reduction and toning of the axons, according to the procedure of Davenport, the surrounding non-nervous tissue elements can be counterstained with a combination of either azocarmine, light green and orange G, or azocarmine, aniline blue and orange G.  相似文献   

3.
The mercury-silver (Hg-Ag) argentaffin technique, known to stain specifically proteins in the lateral components of triads/diads in striated muscle cells, was applied to the central nervous system of adult rats. Following fixation in glutaraldehyde, axons in white and gray matter were selectively stained, but not perikarya or their proximal axon and dendrites. Neural tissues were postfixed 24 hr in 5% (w/v) mercuric acetate in 2% (v/v) acetic acid in distilled water, stained for 12-24 hr in darkness at 37-43 C with ammoniacal silver nitrate solution, freshly prepared by adding concentrated ammonia to 60% (w/v) silver nitrate solution until a small amount of silver oxide precipitate remained undissolved. Samples were then washed with freshly prepared 5% (w/v) sodium sulfite and distilled water. All steps were carried out using dark-colored glass flasks. Samples were dehydrated with ethanol and embedded in Paraplast or Poly Bed. Electron microscopy showed the silver-reducing protein inside the axons. Methylation abolished Hg-Ag axonal reactivity indicating that carboxyl groups were necessary for silver staining. Proteins with solubility properties characteristic of neurofilament proteins were involved in Hg-Ag staining. In the cerebellum the plexus of parallel fibers in the molecular layer were not stained, while basket cell axonal processes reacted intensely. The method appears to distinguish neuronal protein variants related to cytotypic differences in cytoskeletal neurofilaments.  相似文献   

4.
Brains of rat with surgical lesions 3-5 days old are fixed in 10% neutralized formalin (excess of CaCO3), 20 μ serial frozen sections cut therefrom and kept in neutralized formalin for an additional 24-48 hr. The sections are soaked in distilled water 12-24 hr, transferred to 50% alcohol containing 0.75 ml of concentrated NH4OH (sp. gr. 0.91) per 100 ml 12-24 hr, placed in distilled water 2-3 hr and then in silver-pyridine solution (AgNO3 3% aq., 20 ml; pyridine, 1 ml) for 48 hr. Test sections are transferred directly to each one of 3 ammoniated silver-solutions, pH 12.8, 13.0 and 13.2, made as follows: To 200 ml of solution 1 (silver nitrate, 6.4 gm; alcohol 96%, 220 ml; NH4OH (sp. gr. 0.91), 28 ml and distilled water, 440 ml) is added respectively 8-12 ml, 12-16 ml and 16-20 ml of solution 2 (2% NaOH) to give the pH desired. The test sections are studied and the optimal ammoniated silver solution chosen. Two baths of ammoniated silver are used, the section placed with continuous agitation into the first bath for 30 sec and the second bath for 60 sec. The sections are then transferred directly into a reducing bath (formalin 10%, 2ml; alcohol 96%, 5 ml; citric acid 1%, 1.5 ml and distilled water, 4.5 ml) for 2 min and from there to 5% Na2S2O3 for 1 min, rinsed in 3 changes of distilled water, dehydrated and mounted.  相似文献   

5.
The following procedure for staining Negri bodies in sections is based on methods previously described by MacNeal, by Haynes, and by Richter:

Fixation:
  1. 1. Zenker's solution 4 hours at 37°C or Dominici's 3 hours.
  2. 2. 70% alcohol, 12 to 18 hours at room temperature.
  3. 3. 80% alcohol, about 5 to 6 hours.
  4. 4. 90% alcohol, about 4 to 6 hours.
  5. 5. Absolute alcohol about 16 hours.
  6. 6. Ether and absolute alcohol aa, about 8 hours.
  7. 7. 16 to 24 hours in the following mixture: celloidin 1 g., methyl salycilate 25 cc., abs. alcohol 25 cc., ether 25 cc.
  8. 8. Chloroform and paraffin, 2 to 3 hours.
  9. 10. Paraffin, 1 to 1 1/2 hours.
  10. 11. Embed.


staining:
  1. 1. Cut sections 4 to 5 μ.
  2. 2. Bring section to water and cover with Lugol's iodine for 10 minutes.
  3. 3. Decolorize with a 2% sodium thiosulfate (hypo).
  4. 4. Wash thoroly with water.
  5. 5. Cover with a mixture of equal parts of 0.5% phloxine and 1% eosin Y (National Aniline brand) and leave for 15 minutes.
  6. 6. Wash with water and stain 2 to 5 minutes in 0.1% azure B (National Aniline).
  7. 7. Wash with 96% alcohol and decolorize in a mixture of 2 parts absolute alcohol with 1 part clove oil, ordinarily for not more than 1/2 to 1 minute.
  8. 8. Dehydrate rapidly, clear, and mount in Yucatan Elemi.
  相似文献   

6.
Specimens of brain or spinal cord fixed in formalin, Cajal's formol-bromide, or Koenig, Groat and Windle's formalin-acacia can be used to stain oligodendrocytes in frozen, in paraffin, or in celloidin sections. The sections are soaked 3-5 min in 0.02% acetic acid, pH 3.4, then rinsed 2-3 sec in 3% H2O2 and transferred to a silver bath prepared as follows: Mix equal parts of 10% AgNO3 and 10% Na2WO4, and dissolve the precipitate with concentrated NH4OH; avoid an excess of ammonia. Silver at room temperature for 15-20 sec, develop in 1% formalin, dehydrate, and mount. For embedded material, prepare a mixture consisting of 1 part of 10% aqueous Aerosol MA and 4 parts of 10% Aerosol OT in 95% alcohol. Add 5 drops of this mixture to each 50 ml of dilute acetic acid and 3% H2O2; 5 drops to each 20 ml of the silver bath.  相似文献   

7.
A silver staining method for paraffin sections of material fixed in HgCl2, sat. aq., with 5% acetic acid is as follows. Process the sections through the usual sequence of reagents, and including I-KI in 70% alcohol, thiosulfate (5% aq.), washing and back to 70% alcohol containing 5% of NH4OH (conc. aq.). After 3 minutes in the ammoniated alcohol, wash through tap water and 2 changes of distilled water and silver 5-10 minutes at 25°C. in 15% AgNO3 aq. to which 0.02 ml. of pyridine per 100 ml. has been added. Blot the slide, but not the section and do not rinse. Reduce at 45°C. in 0.1% pyrogallol in 55% alcohol, then rinse in 55% alcohol and wash in water. The remainder of the process consists of gold toning, intensifying in oxalic acid, fixing in 5% Na2S2O3, washing, dehydrating, clearing and covering. When the specimen contains much smooth muscle, the I-KI solution is acidified before use by adding 2 ml. of 1N nitric acid per 100 ml., and the sections treated for 3 minutes instead of the usual 2 minutes. Formalin should not be added to sublimate-acetic, but specimens that do not contain strongly argyrophilic nonneural tissue may be fixed in formalin or, preferably, Bouin's fluid. Sections of tissue after the latter type of fixation will not require the I-KI and thiosulfate but can go from 95% alcohol to the ammoniated alcohol. The advantages of fixing in HgCl2-acetic acid are suppression of the staining of connective tissue and intensifying the staining of nerve fibers.  相似文献   

8.
A progressive silver staining method is described, which permits microscopic examination of the sections during the staining process. After formaldehyde fixation, dehydration and embedding in paraffin or celloidin, fine fibers and synaptic endings may be demonstrated. After formaldehyde fixation and mordanting in 3% K2Cr2O7, myelinated fibers and mitochondria are specifically stained.

The unique feature of this method is, that the silver solution (0.5% protargol) is mixed with the reducing solution: 1.6% Rochelle salts, containing traces of Ag NO3, MgSO4, and K2S (U.S.P.). The sections are placed directly into this mixture, which is then warmed to 45-55° C. Sections are removed when progressive staining is completed, washed in water, dehydrated and mounted.

In the fiber stain, nerve fibers and synaptic endings are dark brown or black, and nuclear chromatin is deep brown, against a pale yellow background. When the myelin sheath procedure is followed, the fiber bundles are deep brown, and the intensity of the staining remains the same for specific tracts, aiding in their identification.  相似文献   

9.
Two new methods applicable to the staining of fixed and fresh frozen tissue sections are presented herein. In addition certain improvements are suggested for the technic reported by Geschickter, Walker, Hjort and Moulton (1931). In brief the procedures are as follows:
  1. The thionin eosinate method of Geschickter et al (1931). This procedure has been modified as follows:
    1. A mixture of diethylene glycol, 40 parts, ethylene glycol, 40 parts, and grain alcohol, 20 parts is superior to ethylene glycol, 80 parts, and ethyl alcohol, 20 parts, as a solvent for the compound stain in that the staining is intensified.
    2. Ethylene glycol monobutyl ether supplants diethylene glycol monobutyl ether because of its lower viscosity.
    3. Ethyl phthalate replaces butyl phthalate on account of a more satisfactory viscosity.
  2. The methyl green eosinate procedure is the same as the modified thionin eosinate method except for the following variations:
    1. The staining time is increased to one minute.
    2. Decolorization and washing are reduced to about 15 seconds.
  3. The hematoxylin-eosin method. After cutting, the tissue sections are carried thru the following steps:


Unfold in water; transfer to formalin (4 to 40%) for at least 30 seconds; stain in hematoxylin (Harris) for 30 to 60 seconds; wash in water, 5 seconds; decolorize in 0.1% HC1 or saturated aqueous picric acid, 5 seconds; wash in water, S seconds; float in 0.5% ammonia, 5 to 10 seconds; wash in water, 5 seconds; stain in 5% aqueous eosin, 15 seconds1; wash in water, 5 to 10 seconds; dehydrate in a mixture of diethylene glycol, 30 parts, and ethyl alcohol, 70 parts, 5 to 10 seconds; dehydrate in ethylene glycol monobutyl ether, 5 to 10 seconds; clear in ethyl phthalate, 5 to 10 seconds; float on a glass slide, blot with photographic lintless blotter, place a drop of neutral gum damar on the section, and cover with glass cover slip.  相似文献   

10.
A modification of the Gram stain in which iodine-alcohol is substituted for 95% alcohol as a decolorizing agent has been found particularly useful in staining Gram-positive organisms in tissues and also for smears. The technic for tissue sections follows:
  1. Apply nuclear stain.
  2. Wash.
  3. Stain in Hucker's gentian violet 2 to 3 minutes (i. e. 1 part Sat. Alc. Sol. crystal violet to 4 parts 1% Aqu. Sol. ammonium oxalte).
  4. Wash in water.
  5. Stain in Gram's iodine 5 minutes.
  6. Wash in water.
  7. Decolorize in 95% alcohol to which enough tincture of iodine has been added to give a mahogany color.
  8. Counterstain.
  9. Dehydrate and mount.
  相似文献   

11.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.l% formol as developed agent, 25% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

12.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.1% formol as reducing agent, 2.5% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

13.
It has been shown that silver deposition plays a part in the silver staining process. From this it has been concluded that the rate of reduction of silver within and on histological structures is an important factor.

Some factors controlling the rate of reduction, such as the adsorption of silver hydroxide and ammonia, the affinity of silver for proteins, and the protective power of the gel structures have been pointed out.

Some simple applications of the ideas to silver staining have been given and two technics described, one making use of piperidine instead of ammonia, the other carrying out the reduction in the presence of the silver solution to facilitate deposition.  相似文献   

14.
Following experimental lesions, spinal cords of cats and rabbits were fixed with acid, neutral, and alkaline solutions. Staining was limited to a chromate-osmic (Marchi's) solution and a chlorate-osmic solution. The following conclusions were drawn:

The presence of an acid in the fixative caused normal myelin sheaths to stain. This effect was reduced by washing tissues before staining, by adding acetic acid to the stain, or by employing a non-formalin fixative. It was, however, at no time entirely obviated.

A study was made of the granular deposits which occur in nearly all Marchi preparations and which are especially confusing if very light backgrounds are obtained.

The staining reactions of the granular deposits were very similar to those of degenerating myelin but some suppression of the granules was obtained by adding KCIO3 to the formalin fixative.  相似文献   

15.
Procedures having enhanced reliability over older methods for both Bielschowsky and Cajal types of stain are described.

Fixation of embryos in a solution containing 4% formaldehyde and 0.5% trichloracetic acid greatly improved the staining of neural elements by Bielschowsky's method.

Among the variations of Cajal's type of staining tried, a modification of Ranson's pyridin-silver method gave the most complete staining of neurofibrillar elements. Washing for 0.5 to 1 hour after silver impregnation and shortening of the reduction time from 24 to 4 hours corrected the tendency of the method to overstain.  相似文献   

16.
Hortega's ammoniated silver carbonate method was used to demonstrate lysosomes in the central nervous system and kidney of adult rats. Formol-CaCl2, (10%:1%) fixed, frozen sections were impregnated for 10 min in Hortega's solution: 30 ml of 10% AgNO2 and 90 ml of 5% Na2CO3, with concentrated NH4OH added until the precipitate dissolved, then distilled water to make 400 ml. This procedure revealed silver-positive cytoplasmic structures whose form, shape and distribution were similar to that seen by staining adjacent sections for acid phosphatase. A short fixation of 18-24 hr appears to be essential. A useful, nonenzymatic method for the demonstration of lysosomes is thereby available.  相似文献   

17.
Dioxan has been well established as an advantageous dehydrating agent for plant tissues. It dehydrates equally well after fixatives containing formalin, acetic acid, chromic acid, chromates, mercuric chloride, osmic acid, and alcohol. Better infiltration of paraffin after dehydration may be obtained by passing the material thru (1) a cold bath composed of 30 cc. of dioxan, 5 cc. of xylol and 20 cc. of melted soft paraffin and, (2) a warm bath of 50 cc. of dioxan, 50 cc. of paraffin, and 10 cc. of xylol. Transfer from (2) to soft paraffin. A dioxan fixative consisting of dioxan 50 cc., formalin 6 cc., acetic acid 5 cc., water 50 cc. was devised for delicate subjects. The fixed material is transferred directly into dioxan and mounted in dioxan-diaphane or dioxan-balsam. Very delicate objects require dioxan dilution of the balsam and slow concentration of the mounting medium by evaporation.

Entire plant parts or epidermal peelings are fixed in any desired fixative, washed if necessary, transferred to dioxan and mounted in diluted dioxan-balsam or diaphane. Dioxan may be used to mount hyalin objects whose refractive indexes approach those of balsam in media of higher index than balsam. It may be used in place of alcohol in finishing parafin sections, and since it exhibits different stain solubilities than alcohol it offers an important new tool in obtaining and maintaining stain balances.  相似文献   

18.
A modification of the Del Rio-Hortega method for the demonstration of central nervous system elements is presented. This silver impregnation technique is particularly useful for the classification of cell types for quantitative differential cell counts. Formalin fixed paraffin sections are immersed in formol-ammonium bromide for 1 1/2 hours; this solution is an excellent mordant for various silver nitrate stains. The samples are stained for 20 to 60 minutes in a silver carbonate solution (25 ml of 25% silver nitrate combined with 200 ml of 5% sodium carbonate) and then reduced in a 1% formaldehyde solution to which 20 drops of acetic acid have been added. Finally, the slides are fixed in sodium thiosulfate, rinsed in tap water, dehydrated, cleared, and mounted. This procedure will enable this investigator to identify neurons, oligodendroglia, and astrocytes on the basis of their nuclear staining as well as to demonstrate the laminae of brain tissue since the method allows differentiation of cell layers and fiber tracts.  相似文献   

19.
A satisfactory di-ammine-silver hydroxide solution may be repeatedly and consistently prepared by adding 9 or 10 volumes of 10% silver nitrate solution to 1 volume of 28% ammonia water, running in the first 6 or 7 volumes rapidly and proceeding cautiously from then on, shaking until clear after each addition, until a faint permanent turbidity is reached.

The essential nature of Gomori's iron alum treatment and of Wilder's uranyl nitrate step following the Weigert permanganate-oxalic-acid sequence appears to be an oxidation, since the same results may be achieved with chromic acid, hydrogen peroxide, sodium iodate and elemental iodine, and since this step is better omitted on previously chromated material.  相似文献   

20.
When commercially prepared silver products suitable for staining protozoa by the Bodian silver technic apparently became unavailable, a substitute for Protargol was prepared as follows: 0.9 g. of gelatin is dissolved by heat in 100 ml. of distilled water; to this 0.1 g. of silver nitrate is added at 60°C; this solution is poured into Columbia staining dishes (10 ml.) in which one or two drops of M/10 sodium hydroxide have been added. Copper is not used in the impregnating bath. Smears fixed in Hollande's or Schaudinn's fixatives are bleached and impregnated for 36 hours or more at 35°C. Impregnated smears are reduced with a mixture of hydroquinone and sodium sulfite, and toned with gold chloride as recommended by Kirby (1945).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号