首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional significance of herbivore-induced plant traits known to directly or indirectly influence herbivore performance remains largely untested under field conditions due to the difficulty of uncoupling the response to herbivory from the act of herbivory. The signals that activate many of the induced responses in plants are endogenously produced in response to wounding, unlike many of the predator-induced responses found in aquatic invertebrates (which are activated by exogenous cues derived from predators). Jasmonates, endogenously-produced damage signals, activate diverse wound-induced responses in plants including induced nicotine production in Nicotiana sylvestris. The results presented here are from two experiments which illustrate the use of jasmonates to uncouple induced nicotine production in Nicotiana attenuata (Torrey ex. Watson) from wounding. The exogenous addition of methyl jasmonate (MJ) in small quantities (11 g for a 1.4 g dry mass plant) to roots of hydroponically-grown plants induces de novo nicotine synthesis and increases whole-plant nicotine concentrations just as wounding does. The MJ-induced changes were proportional to the quantity of MJ given. Moreover, the effects of MJ were additive to the effects of damage. Applications of MJ to shoots were less effective. Root treatments also worked with plants growing in a field plot. The application of MJ represents a promising tool for examining the functional significance of induced nicotine responses in plants growing in their native environments.  相似文献   

2.
Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense.  相似文献   

3.
Thus far not many studies focussed on how herbivory in one plant part affects plant defence in the other. The effects of root damage and a leaf-feeding herbivore (Mamestra brassicae) on pyrrolizidine alkaloid (PA) levels of Senecio jacobaea were investigated in a controlled environment. Three cloned S. jacobaea genotypes, which differed in PA concentrations, received four treatments: (1) no damage, (2) root damage (removing half of the root system), (3) shoot herbivory by M. brassicae larvae, (4) root damage and shoot herbivory.Shoot herbivory did not significantly affect shoot biomass, while root damage decreased both root and shoot biomass. Shoot herbivory decreased PA concentrations in the roots. Conversely, root damage increased PA concentrations in the roots. Alkaloid concentrations in the shoot showed a weak response to root damage, shoot herbivory had no effect on PA levels in the shoot. The effect of damage on the allocation of PAs to shoot and roots depended on genotype. One genotype allocated more PAs to the damaged site, another genotype did not change allocation and the third genotype allocated more PAs to the shoot if the roots were damaged. Changes in PA composition were observed in one genotype. Shoot herbivory increased erucifoline concentrations in the shoot and decreased concentrations of senecionine in the roots. In conclusion, we have shown that even in an alleged constitutively defended plant, damage of one compartment affects secondary metabolite level in the other.  相似文献   

4.
Both herbivory and mechanical damage result in increases in the concentration of the wound-signal molecule, jasmonic acid (JA), and the defense metabolite, nicotine, in native tobacco plants, Nicotiana sylvestris Speg. et Comes (Solanaceae). We found that higher concentrations of JA resulted from herbivory by Manduca sexta (L.) larvae than from the mechanical damage designed to mimic the herbivory. While both herbivory and mechanical damage increased JA concentrations in roots of wounded plants, herbivory did not induce either higher root JA or nicotine responses than mechanical damage. In a separate experiment in which mechanical damage was not designed to mimic herbivory, JA responses to herbivory were higher than those to mechanical damage, but the whole-plant (WP) nicotine responses were smaller. Furthermore, when regurgitants from M. sexta larvae were applied to standardized mechanical leaf wounds, leaf JA responses were dramatically amplified. However, neither the root JA response nor the WP nicotine response was comparably amplified by application of regurgitants. Our findings demonstrate that the response of N. sylvestris to herbivory is different from its response to mechanical damage; moreover, oral secretions from larvae may be partly responsible for the difference. During feeding, M. sexta larvae appear to modify the plant's normal defensive response to leaf wounding by reducing the systemic increase in root JA after leaf damage and the subsequent WP nicotine response. Received: 28 February 1997 / Accepted: 9 June 1997  相似文献   

5.
Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus . Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry.  相似文献   

6.
Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.

Leaf herbivory counteracts the repression of jasmonate-related defenses triggered by a root knot nematode in tomato roots impairing the nematode performance via shoot-to-root jasmonate signaling  相似文献   

7.
Solar UV‐B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV‐B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense‐related responses in undamaged and Anticarsia gemmatalis larvae‐damaged leaves of two soybean cultivars grown under attenuated or full solar UV‐B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV‐B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane‐carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field‐grown soybean isoflavonoids were regulated by both herbivory and solar UV‐B inducible ET, whereas flavonols were regulated by solar UV‐B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV‐B‐mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.  相似文献   

8.
Root herbivory affects plant performance, but the effects are not well understood. We tested the effects of the vertical distribution of a root-feeding beetle larva (Anomala cuprea) by restricting its access to the top, middle, or bottom zone in pots of perennial ryegrass (Lolium perenne) or by allowing unrestricted access. We predicted that plant mortality, biomass, and biomass allocation should change with the zone of root herbivory, because both the magnitude of root loss and the consequences of such loss are specific to the point of damage. Seven of nine plants died in each treatment in which the larvae had access to the top zone. In contrast, no plants died when larvae occupied the middle or bottom zones. Plants were killed when the larvae grazed the root base and severed the shoots from the roots. Moreover, total plant biomass and biomass allocation to roots were significantly lower when the larvae were confined to the top and middle feeding zones. The greatest number of roots were removed when the larvae occupied the top feeding zone. Thus, the vertical distribution of a belowground herbivore is crucially important to plant fate. In nature, most belowground herbivores are concentrated near the soil surface, and thus the effects of belowground herbivory are often more severe than the effects of aboveground herbivory.  相似文献   

9.
10.
Plants have evolved complex biochemical mechanisms to counter threats from insect herbivory. Recent research has revealed an important role of roots in plant responses to above ground herbivory (AGH). The involvement of roots is integral to plant resistance and tolerance mechanisms. Roots not only play an active role in plant defenses by acting as sites for biosynthesis of various toxins and but also contribute to tolerance by storing photoassimilates to enable future regrowth. The interaction of roots with beneficial soil‐borne microorganisms also influences the outcome of the interaction between plant and insect herbivores. Shoot‐to‐root communication signals are critical for plant response to AGH. A better understanding of the role of roots in plant response to AGH is essential in order to develop a comprehensive picture of plant‐insect interactions. Here, we summarize the current status of research on the role of roots in plant response to AGH and also discuss possible signals involved in shoot‐to‐root communication.  相似文献   

11.
1. A substantial amount of research on host‐plant selection by insect herbivores is focused around the preference–performance hypothesis (PPH). To date, the majority of studies have primarily considered insects with aboveground life cycles, overlooking insect herbivores that have both aboveground and belowground life stages, for which the PPH could be equally applicable. 2. This study investigated the factors influencing the performance of the root‐feeding vine weevil (Otiorhynchus sulcatus) larvae and whether this was linked to the oviposition behaviour of the maternal adult living aboveground. 3. Maternal insects feeding aboveground reduced root biomass by 34% and increased root carbon by 4%. Larvae feeding on plants subjected to aboveground herbivory had reduced mass. Irrespective of the presence of maternal herbivory, larval mass was positively correlated with root biomass. 4. Larval mass was also reduced by conspecific larvae, previously feeding on roots (19% reduction). However, the mechanism underpinning this effect remains unclear, as in contrast to maternal herbivory aboveground, prior larval feeding did not significantly affect root biomass or root carbon concentrations. 5. Maternal insects did not distinguish between plants infested with larvae and those that were free of larvae, in terms of their egg‐laying behaviour. Conversely, maternal insects tended to lay eggs on plants with smaller root systems, a behaviour that is likely to negatively affect offspring performance. 6. The PPH is not supported by our findings for the polyphagous vine weevil feeding on the host plant raspberry (Rubus idaeus), and in fact our results suggest that there is the potential for strong parent–offspring conflict in this system.  相似文献   

12.
We experimentally demonstrate that elevated CO2 can modify herbivory-induced plant chemical responses in terms of both total and individual glucosinolate concentrations. Overall, herbivory by larvae of diamondback moths (Plutella xylostella) resulted in no change in glucosinolate levels of the annual plant Arabidopsis thaliana under ambient CO2 conditions. However, herbivory induced a significant 28–62% increase in glucosinolate contents at elevated CO2. These inducible chemical responses were both genotype-specific and dependent on the individual glucosinolate considered. Elevated CO2 can also affect structural defenses such as trichomes and insect-glucosinolate interactions. Insect performance was significantly influenced by specific glucosinolates, although only under CO2 enrichment. This study can have implications for the evolution of inducible defenses and coevolutionary adaptations between plants and their associated herbivores in future changing environments.  相似文献   

13.
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10?days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause?Ceffect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.  相似文献   

14.
Populations of Eruca sativa (Brassicaceae) from desert and Mediterranean (Med) habitats in Israel differ in their defense against larvae of the generalist Spodoptera littoralis but not the specialist Pieris brassicae. Larvae of the generalist insect feeding on plants of the Med population gained significantly less weight than those feeding on the desert plants, and exogenous application of methyl jasmonate (MJ) on leaves of the Med plants significantly reduced the level of damage created by the generalist larvae. However, MJ treatment significantly induced resistance in plants of the desert population, whereas the generalist larvae caused similar damage to MJ‐induced and noninduced plants. Analyses of glucosinolates and expression of genes in their synthesis pathway indicated that defense in plants of the Med population against the generalist insect is governed by the accumulation of glucosinolates. In plants of the desert population, trypsin proteinase inhibitor activity was highly induced in response to herbivory by S. littoralis. Analysis of genes in the defense‐regulating signaling pathways suggested that in response to herbivory, differences between populations in the induced levels of jasmonic acid, ethylene, and salicylic acid mediate the differential defenses against the insect. In addition, expression analysis of myrosinase‐associated protein NSP2 suggested that in plants of the desert population, glucosinolates breakdown products were primarily directed to nitrile production. We suggest that proteinase inhibitors provide an effective defense in the desert plants, in which glucosinolate production is directed to the less toxic nitriles. The ecological role of nitrile production in preventing infestation by specialists is discussed.  相似文献   

15.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   

16.
Theoretically, induced defenses should be prevalent within low resource environments like the forest understory where constitutive defenses would be costly. Also, the induced response should be stronger when the herbivore is a generalist rather than a specialist, which often have mechanisms to avoid or overcome plant defenses. These ideas have been previously tested for herbaceous species, and we examined these predictions in Lindera benzoin (spicebush), a common woody shrub of the eastern deciduous forest. Lindera benzoin plants in contrasting light environments served as control plants or were subjected to one of four treatments: application of jasmonic acid, clipping, herbivory by the specialist Epimecis hortaria (tulip tree beauty) and herbivory by the generalist Spodoptera exigua (beet armyworm). Following treatment, we assessed induced responses by measuring leaf chemistry (C/N ratio, protein content, and peroxidase activity), and by using insect bioassays with E. hortaria larvae. We found no difference in peroxidase activity between light environments in controls, plants treated with clipping or jasmonic acid. In plants subject to insect herbivory, peroxidase activity was greater in shade plants than in sun plants. The magnitude of this increase in the shade varied between the herbivores, with a 32 fold increase in plants exposed to the generalist S. exigua and a 9 fold increase in plants exposed to the specialist E. hortaria . Leaves from shade plants had more protein and lower C/N ratios than leaves from sun plants, regardless of induction treatment. In control plants, E. hortaria larvae consumed more leaf biomass and achieved greater final weights in the sun than in the shade, but these differences disappeared with induction treatments were applied. These results are among the first to show rapid induction in a woody plant, and different levels of induction with light environments and with specialist versus generalist herbivores.  相似文献   

17.
Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defenses can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by larvae of the beetle Diabrotica virgifera virgifera induced shoot resistance against herbivores and pathogens. Root herbivory also enhanced aboveground DIMBOA and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with plant stress resistance. Interestingly, the plant hormone abscisic acid (ABA) emerged as a putative long-distance signal in the regulation of these systemic defenses. In this addendum, we have investigated the role of root-derived ABA in aboveground regulation of DIMBOA and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. Furthermore, we discuss the relevance of ABA in relation to defense against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, causing augmented induction of this compound after subsequent shoot attack by S. littoralis caterpillars. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defenses during belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, our results also suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis.Key words: induced resistance, Spodoptera littoralis, Zea mays, Diabrotica virgifera, DIMBOA, chlorogenic acid, absisic acid, priming  相似文献   

18.
In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.  相似文献   

19.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号