首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species'' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed.

Methodology/Principal Findings

We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi''s periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population.

Conclusions/Significance

Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.  相似文献   

2.
Ebola virus, being highly pathogenic for humans and non-human primates and the subject of former weapons programmes, is now one of the most feared pathogens worldwide. In addition, the lack of pre- and post-exposure interventions makes the development of rapid diagnostics, new antiviral agents and protective vaccines a priority for many nations. Further insight into the ecology, immunology and pathogenesis of Ebola virus will promote the delivery of these urgently required tools.  相似文献   

3.
Infectivity-enhancing antibodies to Ebola virus glycoprotein   总被引:4,自引:0,他引:4       下载免费PDF全文
Ebola virus causes severe hemorrhagic fever in primates, resulting in mortality rates of up to 100%, yet there are no satisfactory biologic explanations for this extreme virulence. Here we show that antisera produced by DNA immunization with a plasmid encoding the surface glycoprotein (GP) of the Zaire strain of Ebola virus enhances the infectivity of vesicular stomatitis virus pseudotyped with the GP. Substantially weaker enhancement was observed with antiserum to the GP of the Reston strain, which is much less pathogenic in humans than the Ebola Zaire and Sudan viruses. The enhancing activity was abolished by heat but was increased in the presence of complement system inhibitors, suggesting that heat-labile factors other than the complement system are required for this effect. We also generated an anti-Zaire GP monoclonal antibody that enhanced viral infectivity and another that neutralized it, indicating the presence of distinct epitopes for these properties. Our findings suggest that antibody-dependent enhancement of infectivity may account for the extreme virulence of the virus. They also raise issues about the development of Ebola virus vaccines and the use of passive prophylaxis or therapy with Ebola virus GP antibodies.  相似文献   

4.
A full-size human antibody to Ebola virus was constructed by joining genes encoding the constant domains of the heavy and light chains of human immunoglobulin with the corresponding DNA fragments encoding variable domains of the single-chain antibody 4D1 specific to Ebola virus, which was chosen from a combinatorial phage display library of single-strand human antibodies. Two expression plasmids, pCH1 and pCL1, containing the artificial genes encoding the light and heavy chains of human immunoglobulin, respectively, were constructed. Their cotransfection into the human embryonic kidney cell line HEK293T provided the production of a full-size recombinant human antibody. The affinity constant for the antibody was estimated by solid-phase enzyme-linked immunoassay to be 7.7 × 107 ± 1.5 × 107 M?1. Like the parent single-chain antibody 4D1, the resulting antibody bound the nucleoprotein of Ebola virus and did not interact with the proteins of Marburg virus.  相似文献   

5.
Ebola virus: unravelling pathogenesis to combat a deadly disease   总被引:1,自引:0,他引:1  
Ebola virus (EBOV) causes severe haemorrhagic fever leading to up to 90% lethality. Increasingly frequent outbreaks and the placement of EBOV in the category A list of potential biothreat agents have boosted interest in this virus. Furthermore, development of new technologies (e.g. reverse genetics systems) and extensive studies on Ebola haemorrhagic fever (EHF) in animal models have substantially expanded the knowledge on the pathogenic mechanisms that underlie this disease. Two major factors in EBOV pathogenesis are the impairment of the immune response and vascular dysfunction. Here, we attempt to summarize the current knowledge on EBOV pathogenesis focusing on these two factors and on recent progress in the development of vaccines and potential therapeutics.  相似文献   

6.
A full-size human antibody to Ebola virus was constructed by joining genes encoding the constant domains of the heavy and light chains of human immunoglobulin with the corresponding DNA fragments encoding variable domains of the single-chain antibody 4D1 specific to Ebola virus, which was chosen from a combinatorial phage display library of single-strand human antibodies. Two expression plasmids. pCH1 and pCL1, containing the artificial genes encoding the light and heavy chains of human immunoglobulin, respectively, were constructed. Their cotransfection into the human embryonic kidney cell line HEK293T provided the production of a full-size recombinant human antibody. The affinity constant for the antibody was estimated by solid-phase enzyme-linked immunoassay to be 7.7 x 10(7) +/- 1.5 x 10(7) M(-1). Like the parent single-chain antibody 4DI, the resulting antibody bound the nucleoprotein of Ebola virus and did not interact with the proteins of Marburg virus.  相似文献   

7.
Takada A 《Uirusu》2006,56(1):117-124
In central and west Africa, Ebola virus, a member of the filovirus group, has produced sporadic outbreaks of lethal disease. This virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Although there are no satisfactory biologic explanations for this extreme virulence, it has been suggested that functions of the envelope glycoprotein are likely to play important roles in the pathogenicity of Ebola virus.  相似文献   

8.
9.
Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.  相似文献   

10.
The ecology of Ebola virus   总被引:3,自引:0,他引:3  
Since Ebola virus was first identified more than 30 years ago, tremendous progress has been made in understanding the molecular biology and pathogenesis of this virus. However, the means by which Ebola virus is maintained and transmitted in nature remains unclear despite dedicated efforts to answer these questions. Recent work has provided new evidence that fruit bats might have a role as a reservoir species, but it is not clear whether other species are also involved or how transmission to humans or apes takes place. Two opposing hypotheses for Ebola emergence have surfaced; one of long-term local persistence in a cryptic and infrequently contacted reservoir, versus another of a more recent introduction of the virus and directional spread through susceptible populations. Nevertheless, with the increasing frequency of human filovirus outbreaks and the tremendous impact of infection on the already threatened great ape populations, there is an urgent need to better understand the ecology of Ebola virus in nature.  相似文献   

11.
埃博拉病毒疫苗研究进展   总被引:2,自引:0,他引:2  
埃博拉病毒是一种可引起人和非人灵长类动物出血热传染病的最为致命的烈性病毒,致死率可达90%。2014年在西非爆发的埃博拉疫情引起了全世界的关注。疫苗接种是预防和控制传染病最为常规和有效的方法,尽管目前还没有正式获得批准上市的埃博拉病毒疫苗,但是已有多个尚处于研究阶段的疫苗在非人灵长类动物上取得了很好的保护效果,并有几个已进入临床Ⅰ期试验阶段,有望尽快用于本次埃博拉疫情的防控。本文对目前处于研究阶段的多个类型的埃博拉病毒疫苗进行了综述,为相关研究人员提供参考。  相似文献   

12.
埃博拉病毒疫情正在西非一些国家蔓延,成为历史上最大的一次埃博拉病毒流行,在当地造成极大损失,也对世界各国的公共卫生安全构成严重威胁。本文介绍了埃博拉病毒暴发流行的历史和特点、在自然界的贮存宿主、传播特征等方面研究的进展,以及需要重点关注的问题。  相似文献   

13.
《Cell host & microbe》2023,31(2):260-272.e7
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   

14.
Enveloped viruses often require cleavage of a surface glycoprotein by a cellular endoprotease such as furin for infectivity and virulence. Previously, we showed that Ebola virus glycoprotein does not require the furin cleavage motif for virus replication in cell culture. Here, we show that there are no appreciable differences in disease progression, hematology, serum biochemistry, virus titers, or lethality in nonhuman primates infected with an Ebola virus lacking the furin recognition sequence compared to those infected with wild-type virus. We conclude that glycoprotein cleavage by subtilisin-like endoproteases is not critical for Ebola virus infectivity and virulence in nonhuman primates.  相似文献   

15.
16.
At 739 amino acids, the nucleoprotein (NP) of Ebola virus is the largest nucleoprotein of the nonsegmented negative-stranded RNA viruses, and like the NPs of other viruses, it plays a central role in virus replication. Huang et al. (Y. Huang, L. Xu, Y. Sun, and G. J. Nabel, Mol. Cell 10:307-316, 2002) previously demonstrated that NP, together with the minor matrix protein VP24 and polymerase cofactor VP35, is necessary and sufficient for the formation of nucleocapsid-like structures that are morphologically indistinguishable from those seen in Ebola virus-infected cells. They further showed that NP is O glycosylated and sialylated and that these modifications are important for interaction between NP and VP35. However, little is known about the structure-function relationship of Ebola virus NP. Here, we examined the glycosylation of Ebola virus NP and further investigated its properties by generating deletion mutants to define the region(s) involved in NP-NP interaction (self-assembly), in the formation of nucleocapsid-like structures, and in the replication of the viral genome. We were unable to identify the types of glycosylation and sialylation, although we did confirm that Ebola virus NP was glycosylated. We also determined that the region from amino acids 1 to 450 is important for NP-NP interaction (self-assembly). We further demonstrated that these amino-terminal 450 residues and the following 150 residues are required for the formation of nucleocapsid-like structures and for viral genome replication. These data advance our understanding of the functional region(s) of Ebola virus NP, which in turn should improve our knowledge of the Ebola virus life cycle and its extreme pathogenicity.  相似文献   

17.
18.
正How Ebola virus(EBOV)enters a host cell remains intriguingly mysterious to the public.Recently,a study led by George F Gao and his colleagues has unveiled how the primed glycoprotein on the envelope of EBOV binds to its endosomal receptor Niemann-Pick C1(NPC1)molecule during the process of virus membrane fusion with the host cells,an essential step for viral entry(Wang et al.,2016).This fine resolution of the viral glycoprotein with NPC1 at the atomic level sheds light on the development of therapeutic inhibitors against EBOV infection.  相似文献   

19.
20.
Balb/С mice were immunized with recombinant Ebola virus glycoprotein. Following the selection, screening, and cloning of murine hybridomas, we obtained five genetically stable clones of monoclonal antibodies GPE118 (IgG), GPE274 (IgM), GPE325 (IgM), GPE463 (IgM), and GPE534 (IgG). These antibodies were isolated and purified from the ascitic fluid of Balb/С mice using Protein G affinity chromatography (for IgG) and euglobulin precipitation (for IgM). To select at least three candidate antibodies for testing in biological assays as components of an antibody cocktail for the prophylaxis and treatment of hemorrhagic fever, we carried out an immunochemical analysis of the epitope specificity of the isolated antibodies. Based on the data of immunoblotting and sandwich ELISA, it became evident that the epitope recognized by GPE 534 differs from the epitopes recognized by the monoclonal antibodies GPE 118 and GPE 325. The last two antibodies also have different epitope specificity: it follows from the immunoblotting data and from the data on the binding of these antibodies with the intact and oxidized (partly deglycosylated) recombinant glycoprotein. For the biological activity studies and the development of recombinant counterparts, we selected three candidate high-affinity monoclonal antibodies GPE 534, GPE 118, and GPE 325.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号