首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a technique for rapid labeling of a large number of cells in the nervous system with many different colors. By delivering lipophilic dye-coated particles to neuronal preparations with a "gene gun," individual neurons and glia whose membranes are contacted by the particles are quickly labeled. Using particles that are each coated with different combinations of various lipophilic dyes, many cells within a complex neuronal network can be simultaneously labeled with a wide variety of colors. This approach is most effective in living material but also labels previously fixed material. In living material, labeled neurons continue to show normal synaptic responses and undergo dendritic remodeling. This technique is thus useful for studying structural plasticity of neuronal circuits in living preparations. In addition, the Golgi-like labeling of neurons with many different colors provides a novel way to study neuronal connectivity.  相似文献   

2.
An essential phenomenon of the functional brain is synaptic plasticity which is associated with changes in the strength of synapses between neurons. These changes are affected by both extracellular and intracellular mechanisms. For example, intracellular phosphorylation-dephosphorylation cycles have been shown to possess a special role in synaptic plasticity. We, here, provide the first computational comparison of models for synaptic plasticity by evaluating five models describing postsynaptic signal transduction networks. Our simulation results show that some of the models change their behavior completely due to varying total concentrations of protein kinase and phosphatase. Furthermore, the responses of the models vary when models are compared to each other. Based on our study, we conclude that there is a need for a general setup to objectively compare the models and an urgent demand for the minimum criteria that a computational model for synaptic plasticity needs to meet.  相似文献   

3.
突触可塑性是神经系统所具有的重要特征,也是神经系统实现其功能的重要保障。按照持续的时间划分,突触可塑性可分为短时程突触可塑性和长时程突触可塑性。短时程突触可塑性包括短时程增强和短时程压抑两种类型。与长时程突触可塑性不同,短时程突触可塑性的产生主要依赖于神经递质释放概率的变化,其往往决定神经回路的信息处理和反应模式,不仅直接参与了对输入信号的识别和处理,而且还可对长时程突触可塑性的表达产生重要影响。  相似文献   

4.
The hippocampus plays an important role in learning and memory. Synaptic plasticity in the hippocampus, short-term and long-term, is postulated to be a neural substrate of memory trace. Paired-pulse stimulation is a standard technique for evaluating a form of short-term synaptic plasticity in rodents. However, evidence is lacking for paired-pulse responses in the primate hippocampus. In the present study, we recorded paired-pulse responses in the dentate gyrus of monkeys while stimulating to the medial part of the perforant path at several inter-pulse intervals (IPIs) using low and high stimulus intensities. When the stimulus intensity was low, the first pulse produced early strong depression (at IPIs of 10-30 ms) and late slight depression (at IPIs of 100-1000 ms) of field excitatory postsynaptic potentials (fEPSPs) generated by the second pulse, interposing no depression IPIs (50-70 ms). When the stimulus intensity was high, fEPSPs generated by the second pulse were depressed by the first pulse at all IPIs except for the longest one (2000 ms). Population spikes (PSs) generated by the second pulse were completely blocked or strongly depressed at shorter IPIs (10-100 or 200 ms, respectively), while no depression or slight facilitation occurred at longer IPIs (500-2000 ms). Administration of diazepam slightly increased fEPSPs, while it decreased PSs produced by the first pulse. It also enhanced the facilitation of PSs produced by the second stimulation at longer IPIs. The present results, in comparison with previous studies using rodents, indicate that paired-pulse responses of fEPSPs in the monkey are basically similar to those of rodents, although paired-pulse responses of PSs in the monkey are more delayed than those in rodents and have a different sensitivity to diazepam.  相似文献   

5.
Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20-25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.  相似文献   

6.
Liu XJ  Huang FS  Huang C  Yang ZM  Feng XZ 《生理学报》2008,60(2):284-291
通过细胞外记录方法记录场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)的变化是研究突触可塑性,诸如长时程增强(long-term potentiation,LTP)和双脉冲可塑性(paired-pulse plasticity,PPP)的最常见方法之一。fEPSP波形的起始斜率、起始面积、峰值及总面积等的变化常用作判断突触可塑性增强或减弱的标准。在相同记录结果中测量fEPSP波形不同部位通常会有不同的结果,因此可能得出不同的结论,这些往往会被研究者忽略。本文通过测量小鼠海马CA1区细胞fEPSP波形的起始斜率、起始面积、峰值、总面积及时间参数等,分析比较高频刺激(high-frequency stimulation,HFS)诱发的突触可塑性,包括LTP和PPP的变化。结果显示,LTP过程中AMPA受体动力学变化加快,且在同一记录中,fEPSP波形不同部位的测量分析可以产生较大幅度的LTP和PPP差异。给予HFS后,双脉冲诱发fEPSP的比率在测量起始面积时略有下降,但在测量起始斜率时则显著增加,这些结果可能导致相反的结论。因此,全面仔细地分析fEPSP波形在整个实验中的变化对正确了解突触可塑性至关重要。  相似文献   

7.
Synaptic plasticity is the cellular mechanism underlying the phenomena of learning and memory. Much of the research on synaptic plasticity is based on the postulate of Hebb (1949) who proposed that, when a neuron repeatedly takes part in the activation of another neuron, the efficacy of the connections between these neurons is increased. Plasticity has been extensively studied, and often demonstrated through the processes of LTP (Long Term Potentiation) and LTD (Long Term Depression), which represent an increase and a decrease of the efficacy of long-term synaptic transmission. This review summarizes current knowledge concerning the cellular mechanisms of LTP and LTD, whether at the level of excitatory synapses, which have been the most studied, or at the level of inhibitory synapses. However, if we consider neuronal networks rather than the individual synapses, the consequences of synaptic plasticity need to be considered on a large scale to determine if the activity of networks are changed or not. Homeostatic plasticity takes into account the mechanisms which control the efficacy of synaptic transmission for all the synaptic inputs of a neuron. Consequently, this new concept deals with the coordinated activity of excitatory and inhibitory networks afferent to a neuron which maintain a controlled level of excitability during the acquisition of new information related to the potentiation or to the depression of synaptic efficacy. We propose that the protocols of stimulation used to induce plasticity at the synaptic level set up a "homeostatic potentiation" or a "homeostatic depression" of excitation and inhibition at the level of the neuronal networks. The coordination between excitatory and inhibitory circuits allows the neuronal networks to preserve a level of stable activity, thus avoiding episodes of hyper- or hypo-activity during the learning and memory phases.  相似文献   

8.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   

9.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.  相似文献   

10.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

11.
Integration of biochemical signalling in spines   总被引:4,自引:0,他引:4  
Short-term and long-term changes in the strength of synapses in neural networks underlie working memory and long-term memory storage in the brain. These changes are regulated by many biochemical signalling pathways in the postsynaptic spines of excitatory synapses. Recent findings about the roles and regulation of the small GTPases Ras, Rap and Rac in spines provide new insights into the coordination and cooperation of different pathways to effect synaptic plasticity. Here, we present an initial working representation of the interactions of five signalling cascades that are usually studied individually. We discuss their integrated function in the regulation of postsynaptic plasticity.  相似文献   

12.
Animals must respond selectively to specific combinations of salient environmental stimuli in order to survive in complex environments. A task with these features, biconditional discrimination, requires responses to select pairs of stimuli that are opposite to responses to those stimuli in another combination. We investigate the characteristics of synaptic plasticity and network connectivity needed to produce stimulus-pair neural responses within randomly connected model networks of spiking neurons trained in biconditional discrimination. Using reward-based plasticity for synapses from the random associative network onto a winner-takes-all decision-making network representing perceptual decision-making, we find that reliably correct decision making requires upstream neurons with strong stimulus-pair selectivity. By chance, selective neurons were present in initial networks; appropriate plasticity mechanisms improved task performance by enhancing the initial diversity of responses. We find long-term potentiation of inhibition to be the most beneficial plasticity rule by suppressing weak responses to produce reliably correct decisions across an extensive range of networks.  相似文献   

13.
There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.  相似文献   

14.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

15.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

16.
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form predominantly unidirectional pairwise connections. The cause of these structural differences in excitatory synaptic microcircuits is unknown. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in simultaneous neuronal pair recordings in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. Our approach combines an SD phenomenological model with an STDP model that faithfully captures long-term plasticity dependence on both spike times and frequency. As a proof of concept, we first simulate and analyze recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical external inputs to the network, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. We then show that the same results hold for heterogeneous networks, including both facilitating and depressing synapses. This does not contradict a recent theory that proposes that motifs are shaped by external inputs, but rather complements it by examining the role of both the external inputs and the internally generated network activity. Our study highlights the conditions under which SD-STDP might explain the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs.  相似文献   

17.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

18.
神经元长时程突触可塑性是学习和记忆的基础,神经元长时程突触可塑性的维持依赖于基因的转录和蛋白质合成.然而,这些转录产物和新合成的蛋白质是如何从胞体运输到突触点,还不甚清楚.近年来的研究显示,当长时程突触可塑性发生时,被激活的突触能通过建立突触标记(synaptic tag)来识别、捕捉和利用其所需要的基因产物,以维持突触可塑性的长时程变化.这一过程或现象被称为突触标识(synaptic tagging).本文就近年来突触标识的研究进展作一概述.  相似文献   

19.
L Zhong  NZ Gerges 《PloS one》2012,7(7):e41275
Calcium entry and the subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. The induction of long-term potentiation (LTP) in the CA1 region of the hippocampus requires a relatively high amount of calcium-calmodulin. This requirement is usually explained, based on in vitro and theoretical studies, by the low affinity of CaMKII for calmodulin. An untested hypothesis, however, is that calmodulin is not randomly distributed within the spine and its targeting within the spine regulates LTP. We have previously shown that overexpression of neurogranin enhances synaptic strength in a calmodulin-dependent manner. Here, using post-embedding immunogold labeling, we show that calmodulin is not randomly distributed, but spatially organized in the spine. Moreover, neurogranin regulates calmodulin distribution such that its overexpression concentrates calmodulin closer to the plasma membrane, where a high level of CaMKII immunogold labeling is also found. Interestingly, the targeting of calmodulin by neurogranin results in lowering the threshold for LTP induction. These findings highlight the significance of calmodulin targeting within the spine in synaptic plasticity.  相似文献   

20.
Terminally differentiated primary cells represent a valuable in vitro model to study signaling events associated within a specific tissue. Quantitative proteomic methods using metabolic labeling in primary cells encounter labeling efficiency issues hindering the use of these cells. Here we developed a method to quantify the proteome and phosphoproteome of cultured neurons using (15)N-labeled brain tissue as an internal standard and applied this method to determine how an inhibitor of an excitatory neural transmitter receptor, phencyclidine (PCP), affects the global phosphoproteome of cortical neurons. We identified over 10,000 phosphopeptides and made accurate quantitative measurements of the neuronal phosphoproteome after neuronal inhibition. We show that short PCP treatments lead to changes in phosphorylation for 7% of neuronal phosphopeptides and that prolonged PCP treatment alters the total levels of several proteins essential for synaptic transmission and plasticity and leads to a massive reduction in the synaptic strength of inhibitory synapses. The results provide valuable insights into the dynamics of molecular networks implicated in PCP-mediated NMDA receptor inhibition and sensorimotor deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号