首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll‐like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%–90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well‐utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4‐sufficient and TLR4‐deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4?/? mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high‐throughput RNA‐Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine‐cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM‐CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4?/? mice compared with ApcMin/+ WT mice. In the functional study of core down‐regulation factors, it was found that IL6, GM‐CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.  相似文献   

2.
IL-17 plays an important role in gut homeostasis. However, the role of IL-17F in intestinal tumorigenesis has not been addressed. Here we demonstrate that ablation of IL-17F significantly inhibits spontaneous intestinal tumorigenesis in the small intestine of ApcMin/+ mice. IL-17F ablation decreased IL-1β and Cox-2 expression as well as IL-17 receptor C (IL-17RC) expression, which were increased in tumors from ApcMin/+ mice. Lack of IL-17F did not reverse the splenomegaly but partially restored thymic atrophy, suggesting a local effect of IL-17F in the intestine. IL-17F deficient ApcMin/+ mice showed a significant decrease in immune cell infiltration in the lamina propria. Interestingly, the expression of IL-17A from CD4 T cells in the lamina propria remains unchanged in the absence of IL-17F. Collectively, our results suggest the proinflammatory and essential role of IL-17F to develop spontaneous intestinal tumorigenesis in ApcMin/+ mice in the presence of IL-17A.  相似文献   

3.
Phosphatase and tensin homolog (Pten) antagonizes PI3K-Akt signaling; therefore, Pten impairment causes tumorigenesis. However, the correlation between Pten deficiency and colon cancer has remained elusive due to numerous opposite observations. To study this correlation, we examined whether Pten deficiency in intestinal epithelial cells (IECs) induces tumorigenesis.With mucosal biopsies of human colon cancer and normal colon, Pten mRNA was evaluated by quantitative PCR. Using IEC-specific Pten knockout mice (PtenΔIEC/ΔIEC), we examined the mitotic activity of IECs; and PtenΔIEC/ΔIEC; Apcmin/+ mice were generated by combining PtenΔIEC/ΔIEC with Apcmin/+ mice. Tumor-associated gene was evaluated by micro-array analysis. Fecal microbiome was analyzed through 16S rRNA gene sequencing.We found that Pten mRNA level was reduced in human colon cancer relative to normal tissues. Augmented chromatids, increased Ki-67 and PCNA expression, and enhanced Akt activation were identified in IECs of PtenΔIEC/ΔIEC mice compared to Pten+/+ littermate. Combining PtenΔIEC/ΔIEC with Apcmin/+ condition caused rapid and aggressive intestinal tumorigenesis. However, PtenΔIEC/ΔIEC mice did not develop any tumors. While maintaining the tumor-driving potential, these data indicated that IEC-Pten deficiency alone did not induce tumorigenesis in mice. Furthermore, the expression of tumor-promoting and tumor-suppressing genes was decreased and increased, respectively, in the intestine of PtenΔIEC/ΔIEC mice compared to controls. The abundance of Akkermansia muciniphila, capable of inducing chronic intestinal inflammation, was diminished in PtenΔIEC/ΔIEC mice compared to controls.These findings suggested that altered tumor-associated gene expression and changed gut microbiota shape a tumor-preventive microenvironment to counteract the tumor-driving potential, leading to the tumor prevention in PtenΔIEC/ΔIEC mice.  相似文献   

4.
Western-type diet (WD) is a risk factor for colorectal cancer, but the underlying mechanisms are poorly understood. We investigated the interaction of WD and heterozygous mutation in the Apc gene on adenoma formation and metabolic and immunological changes in the histologically normal intestinal mucosa of ApcMin/+ (Min/+) mice. The diet used was high in saturated fat and low in calcium, vitamin D, fiber and folate. The number of adenomas was twofold higher in the WD mice compared to controls, but adenoma size, proliferation or apoptosis did not differ. The ratio of the Min to wild-type allele was higher in the WD mice, indicating accelerated loss of Apc heterozygosity (LOH). Densities of intraepithelial CD3ε+ T lymphocytes and of mucosal FoxP3+ regulatory T cells were higher in the WD mice, implying inflammatory changes. Western blot analyses from the mucosa of the WD mice showed suppressed activation of the ERK and AKT pathways and a tendency for reduced activation of the mTOR pathway as measured in phosphoS6/S6 levels. The expression of pyruvate dehydrogenase kinase 4 was up-regulated in both mRNA and protein levels. Gene expression analyses showed changes in oxidation/reduction, fatty acid and monosaccharide metabolic pathways, tissue organization, cell fate and regulation of apoptosis. Together, our results suggest that the high-risk Western diet primes the intestine to tumorigenesis through synergistic effects in energy metabolism, inflammation and oxidative stress, which culminate in the acceleration of LOH of the Apc gene.  相似文献   

5.
The etiology of colon cancer is a complex phenomenon that involves both genetic and environmental factors. However, only about 20% have a familial basis with the largest fraction being attributed to environmental causes that can lead to chronic inflammation. While the link between inflammation and colon cancer is well established, the temporal sequence of the inflammatory response in relation to tumorigenesis has not been characterized. We examined the timing and magnitude of the intestinal inflammatory cytokine response in relation to tumorigenesis in the ApcMin/+ mouse. ApcMin/+ mice and wildtype mice were sacrificed at one of 4 time-points: 8, 12, 16, and 20 weeks of age. Intestinal tissue was analyzed for polyp burden (sections 1, 4 and 5) and mRNA expression and protein concentration of MCP-1, IL-1β, IL-6 and TNF-α (sections 2 and 3). The results show that polyp burden was increased at 12, 16 and 20 weeks compared to 8 weeks (P < 0.05). Gene expression (mRNA) of MCP-1, IL-1β, IL-6 and TNF-α was increased in sections 2 and 3 starting at week 12 (P < 0.05), with further increases in MCP-1, IL-1β and IL-6 at 16 weeks (P < 0.05). Protein concentration for these cytokines followed a similar pattern in section 3. Similarly, circulating MCP-1 was increased at 12 weeks (P < 0.05) and then again at 20 weeks (P < 0.05). In general, overall polyp number and abundance of large polyps were significantly correlated with the inflammatory cytokine response providing further support for a relationship between polyp progression and these markers. These data confirm the association between intestinal cytokines and tumorigenesis in the ApcMin/+ mouse and provide new information on the timing and magnitude of this response in relation to polyp development. These findings may lead to the development of inflammatory mediators as important biomarkers for colon cancer progression. Further, these data may be relevant in the design of future investigations of therapeutic interventions to effectively target inflammatory processes in rodent models.  相似文献   

6.
《Translational oncology》2020,13(2):300-307
Inactivation of the adenomatous polyposis coli (APC) gene is the initiating event in familial adenomatous polyposis (FAP) patients. Up to 90% of FAP patients show intestinal tumors and other extracolonic malignancies including hepatoblastomas, desmoid tumors, and brain cancer. APC mutation mice (ApcMin/+ mice) develop benign polyps in the intestinal tract. It has been reported that small numbers of ApcMin/+ mice develop breast carcinomas. Here, we found that approximately 1.6% of ApcMin/+ mice suffered skin neoplasm. The results demonstrated that these skin tumors are not derived from intestinal adenomas. Sequencing of skin tumors of ApcMin/+ mice and ApcMin/+ mice skin. The data showed that somatic mutations and gene expression levels changed greatly in skin tumors compared to control. Similarly, APC mutation accounts for 27% in the patients of nonmelanoma skin carcinomas in cancer database, and two above genes mutation coexist was observed in all patients. Furthermore, using gene mutation reagent (DMBA)–treated ApcMin/+ mice skin, the skin epithelium and glandular begin hyperplasia in ApcMin/+ mice. These findings revealed that the somatic mutation hit on the germline mutation increase the tumor incidence, suggesting that the somatic mutation should be avoided if the germline mutation exists in one body.  相似文献   

7.
8.
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) ApcMin/+ mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. ApcMin/+ mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The ApcMin model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter ApcMin-mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 ApcMin/+ mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than ApcMin/+ controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: 1) Mom12, a dominant modifier linked to the congenic region on chromosome 6, and 2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.  相似文献   

9.
10.
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.  相似文献   

11.
CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice.  相似文献   

12.
Cyclin dependent kinase 4 (Cdk4) is a cell cycle regulator involved in early G1 cell cycle progression and has been indirectly implicated in angiogenesis in the Min mouse system, a mouse that harbors a mutation in the Apc gene. Apc+/Min mice when crossed with Ink4a/arf-/- mice, exhibited increased angiogenesis of colorectal tumors suggesting that dysregulation of Cdk4 (due to loss of Ink4a-mediated suppression) may contribute to enhanced angiogenesis. To demonstrate a direct role for Cdk4 in angiogenesis, we crossed mice that have an activated Cdk4, Cdk4R24C/R24C mice, with Apc+/Min mice and examined levels of angiogenesis in intestinal tumors formed. Our results show an increase in the percentage of highly vascularized tumors in Cdk4R24C/R24C:ApcMin/+ and Cdk4+/R24C:ApcMin/+ mice compared to Cdk4+/+:ApcMin/+ mice. In addition immunohistochemical analysis showed an increase in CD-31 staining localized to endothelial cells of Cdk4R24C/R24C:ApcMin/+ mouse tumors, supporting the hypothesis of increased vasculature in these tumors. Further analysis showed an increase in the expression of the E2F1 target proteins Vegf-b and Cyclin A in Cdk4R24C/R24C:Apc+/Min intestinal tumors. Together these data suggest that the dysregulated Cdk4 gene plays an important role in angiogenesis during intestinal tumor formation and may in part act via increasing E2F1 target proteins. This is the first report to show that Cdk4 has a direct role in angiogenesis in vivo and may be an important drug target to reduce or prevent angiogenesis during intestinal tumor formation.  相似文献   

13.
The Ras/mitogen-activated protein kinase (MAPK) pathway controls fundamental cellular processes such as proliferation, differentiation, and apoptosis. The dual-specificity phosphatase 6 (DUSP6) regulates cytoplasmic MAPK signaling by dephosphorylating and inactivating extracellular signal-regulated kinase (ERK1/2) MAPK. To determine the role of DUSP6 in the maintenance of intestinal homeostasis, we characterized the intestinal epithelial phenotype of Dusp6 knockout (KO) mice under normal, oncogenic, and proinflammatory conditions. Our results show that loss of Dusp6 increased crypt depth and epithelial cell proliferation without altering colonic architecture. Crypt regeneration capacity was also enhanced, as revealed by ex vivo Dusp6 KO organoid cultures. Additionally, loss of Dusp6 induced goblet cell expansion without affecting enteroendocrine and absorptive cell differentiation. Our data also demonstrate that Dusp6 KO mice were protected from acute dextran sulfate sodium-induced colitis, as opposed to wild-type mice. In addition, Dusp6 gene deletion markedly enhanced tumor load in Apc Min/+ mice. Decreased DUSP6 expression by RNA interference in HT29 colorectal cancer cells enhanced ERK1/2 activation levels and promoted both anchorage-independent growth in soft agar as well as invasion through Matrigel. Finally, DUSP6 mRNA expression in human colorectal tumors was decreased in advanced stage tumors compared with paired normal tissues. These results demonstrate that DUSP6 phosphatase, by controlling ERK1/2 activation, regulates colonic inflammatory responses, and protects the intestinal epithelium against oncogenic stress.  相似文献   

14.
Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid–supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer.  相似文献   

15.
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) ApcMin/+ mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. ApcMin/+ mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The ApcMin model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter ApcMin-mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 ApcMin/+ mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than ApcMin/+ controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: (1) Mom12, a dominant modifier linked to the congenic region on chromosome 6 and (2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.Key words: adenomatous polyposis coli, modifier of min, congenic mice, caveolin-1, cancer susceptibility  相似文献   

16.
Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart.  相似文献   

17.
18.
19.
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been associated with colorectal cancer growth and metastasis, however, a causal role for CCL20 signaling through CCR6 in promoting intestinal carcinogenesis has not been demonstrated in vivo. In this study, we aimed to determine the role of CCL20-CCR6 interactions in spontaneous intestinal tumorigenesis. CCR6-deficient mice were crossed with mice heterozygous for a mutation in the adenomatous polyposis coli (APC) gene (APCMIN/+ mice) to generate APCMIN/+ mice with CCR6 knocked out (CCR6KO-APCMIN/+ mice). CCR6KO-APCMIN/+ mice had diminished spontaneous intestinal tumorigenesis. CCR6KO-APCMIN/+ also had normal sized spleens as compared to the enlarged spleens found in APCMIN/+ mice. Decreased macrophage infiltration into intestinal adenomas and non-tumor epithelium was observed in CCR6KO-APCMIN/+ as compared to APCMIN/+ mice. CCL20 signaling through CCR6 caused increased production of CCL20 by colorectal cancer cell lines. Furthermore, CCL20 had a direct mitogenic effect on colorectal cancer cells. Thus, interactions between CCL20 and CCR6 promote intestinal carcinogenesis. Our results suggest that the intestinal tumorigenesis driven by CCL20-CCR6 interactions may be driven by macrophage recruitment into the intestine as well as proliferation of neoplastic epithelial cells. This interaction could be targeted for the treatment or prevention of malignancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号