首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferation, morphology and time course patterns of marker enzyme activities of primary cultures of renal rabbit proximal tubule cells (RPT cells) and Opossum kidney cells (OK cells) in antibiotic-free and serum-free defined medium were investigated. Both RPT and OK cells grew to confluency within 6-8 days. RPT cells were thicker and displayed higher density of both microvilli and mitochondria when compared with OK cells. RPT cells exhibited higher activity of glutathione-S-transferase when compared with OK cells, whereas in the latter, higher glutathione content could be detected. Apical and basolateral membrane enzymes were higher in RPT cells than in OK cells. Stable high glycolytic activity and low gluconeogenesis activity in OK cells pointed out a strict dependence on glycolysis, whereas RPT cells exhibited glucose metabolism shift towards the glycolysis pathway.  相似文献   

2.
Mitochondria and reactive oxygen species in renal cancer   总被引:3,自引:0,他引:3  
Hervouet E  Simonnet H  Godinot C 《Biochimie》2007,89(9):1080-1088
  相似文献   

3.
Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose – and, by implication, flux through hexokinase – in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose‐independent mechanism.  相似文献   

4.
This work was performed to gain more information on the role of pyruvate kinase isoenzymes in the regulation of renal carbohydrate metabolism. Immunohistochemically, pyruvate kinase type L is shown to be localized in the proximal tubule of the nephron and pyruvate kinase type M2 in the distal tubule and the collecting duct. a tight relationship between gluconeogenesis and pyruvate recycling was found. The rate of gluconeogenesis (8 mumol/g wet wt. per 30 min) was of the same order of magnitude as the rate of pyruvate recycling (10.92 mumol/g wet wt. per 30 min). Stimulation of gluconeogenesis from 20 mM lactate in kidney cortex slices of 24-h-starved rats by dibutyryl-cAMP, alanine and parathyroid hormone was connected with a decrease in pyruvate recycling; inhibition of gluconeogenesis due to a lack of Ca2+ in the incubation medium was linked with an increase in pyruvate recycling. The degradation of [6-14C]glucose to lactate, pyruvate, ketone bodies and CO2 and of [2-14C]lactate was unaffected by dibutyryl-cAMP, alanine, epinephrine, vasopressin or the omission of Ca2+ from the incubation medium. 1 mM dibutyryl-cAMP or 5 mM alanine did not alter the activities of oxaloacetate decarboxylase, 'malic' enzyme and malate dehydrogenase from rat kidney cortex. Since aerobic glycolysis in the distal tubules and the collecting ducts is not influenced by hormones, dibutyryl-cAMP and Ca2+, pyruvate kinase type M2 residing in this tissue is unlikely to be a control point of glycolysis. Since this tissue degrades only one-seventh of the glucose formed via gluconeogenesis, it does not contribute significantly to pyruvate recycling. Therefore, the decrease of pyruvate recycling in the presence of dibutyryl-cAMP and alanine in rat kidney cortex slices, leading to increased renal gluconeogenesis, has to be ascribed to the regulation of pyruvate kinase type L.  相似文献   

5.
Protection of tissues from oxygen toxicity is one of the major prerequisites to aerobic life. Since a wide variety of xenobiotics with prooxidant activity is excreted by the kidney, renal tubule cells should be protected from hazardous oxygen species. Because intravenously injected Cu/Zn-type superoxide dismutase (SOD) is rapidly excreted in the urine in its intact form, effective dismutation of superoxide radicals cannot be achieved in vivo by intravenously administered SOD. To scavenge superoxide radicals and inhibit their toxic effects in and around renal tubule cells, a hexamethylene-diamine (AH)-conjugated SOD (AH-SOD) was synthesized. When injected intravenously into the rat, (125)I-labeled AH-SOD disappeared from the circulation with a half-life of 3 min and accumulated in the kidney. After 30 min of administration, more than 80% of the radioactivity derived from AH-SOD was found to localize in the kidney without being excreted in the urine. Immunohistochemical examination revealed that, 60 min after administration, the major part of AH-SOD localized in renal proximal tubule cells. Kinetic analysis using right-side-out-oriented renal brush border vesicles revealed that AH-SOD bound to their membrane surface by some mechanism which was inhibited by AH but not by heparin and albumin. These results indicated that AH-SOD rapidly underwent renal glomerular filtration, bound to apical plasma membranes of proximal tubule cells, and localized in these cells for a fairly long time without being excreted in the urine. Thus, AH-SOD might permit studies on the role of superoxide radicals in and around renal proximal tubule cells.  相似文献   

6.
Summary The properties of two sodium-dependentd-glucose transporters previously identified in renal proximal tubule brush border membrane (BBM) vesicles are studied. The low-affinity system, found in BBM vesicles from the outer cortex (early proximal tubule), is shown to be associated with the high-affinity phlorizin binding site typically found in renal BBM preparations. The high-affinity system, found in BBM vesicles from the outer medulla (late proximal tubule), is almost two orders of magnitude less sensitive to inhibition by phlorizin and is apparently not associated with high-affinity phlorizin binding. The sodium/g;ucose stoichiometry of the outer medullary transporter is found to be 21 by two independent methods. Previous measurements have established that the stoichiometry of the outer cortical system is 11. It is suggested that this arrangement of transporters in series along the proximal tubule enables the kidney to reabsorb glucose from the urine in an energy-efficient fashion. The bulk of the glucose load is reabsorbed early in the proximal tubule at an energetic cost of one Na+ per glucose molecule. Then in the late proximal tubule a larger coupling ratio and hence a larger driving force is employed to reabsorb the last traces of glucose from the urine.  相似文献   

7.
ObjectivesAPOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms.MethodsDLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation.ResultsDLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1.ConclusionLncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.  相似文献   

8.
More than 50 years ago, Warburg proposed that the shift in glucose metabolism from oxidative phosphorylation (OXPHOS) to glycolysis occurring in spite of an adequate oxygen supply was at the root of cancer. This hypothesis often disregarded over the following years has recently stirred up much interest due to progress made in cancer genetics and proteomics. Studies related to renal cancers have been particularly informative to understand how abnormal use of glucose and decrease in OXPHOS are linked to cell proliferation in tumors. Indeed, in aggressive tumors such as clear cell renal carcinoma, the von Hippel–Lindau factor invalidation stabilizes the hypoxia-inducible factor (HIF) in the presence of oxygen. HIF stimulating glycolytic gene expression increases the glycolytic flux. Deficiencies in genes involved in oxidative phosphorylation that can explain the down-regulation of OXPHOS components also begin to be identified. These findings are important in the search for novel therapeutic approaches to cancer treatment.  相似文献   

9.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

10.
Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.  相似文献   

11.
TIGAR, a p53-inducible regulator of glycolysis and apoptosis   总被引:22,自引:0,他引:22  
The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.  相似文献   

12.
13.
Summary An indirect immunoperoxidase procedure has been used to demonstrate sites of glycolysis and gluconeogenesis in normal rat kidney and liver. In kidney, the gluconeogenic enzyme fructose 1,6-biphosphatase was restricted to the proximal tubular epithelium, while the glycolytic enzyme hexokinase predominated in more distal segments. Intense staining for the biphosphatase in proximal convoluted tubular brush borders suggests that reabsorbed substrates may be used directly at this site in renal gluconeogenesis. In view of the high phosphofructokinase and pyruvate kinase activities present in collecting ducts, their relatively low hexokinase activities and their relatively pale immunostaining for hexokinase indicate that glycolytic substrates which feed into the pathway subsequent to the initial phosphorylation step, rather than glucose, may be the major energy source for the rat renal papilla.Immunostaining in the liver was consistent with the metabolic zonation of liver parenchyma, in that glucokinase occurred mainly in perivenous regions and fructose 1,6-bisphosphatase in periportal areas. The presence of such metabolic zonation is difficult to reconcile with the widely held view that the majority of hepatic glucogen is derived directly from glucose. A model for hepatic glycogen synthesis is proposed which links the concept of parenchymal zonal heterogeneity with recent biochemical evidence concerning the glucose paradox and with microscopical studies on the dynamics of glycogen deposition after refeeding.  相似文献   

14.
To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.  相似文献   

15.
A pure suspension of proximal tubule cells from the rabbit kidney was isolated by a new procedure, without proteolytic enzyme treatment. Electron microscopic examination revealed that these intact cells had long microvilli. All the marker enzymes located in the proximal tubule were higher in the isolated cells compared with renal cortex. Adenylate cyclase activity of the isolated cells was increased by PTH and NaF stimulations, while other hormones had minor effects. This isolated cell suspension showed a high respiration rate, a linear glucose production and a normal cell ATP level. All these results confirmed the isolation of viable proximal tubular cells with high metabolic capacities from the rabbit kidney.  相似文献   

16.
We have assessed the impact of increasing oxygen availability on cellular phenotype expression of rabbit proximal tubule cells in primary culture developed with variable glucose and/or insulin contents. To mitigate hypoxia at the cell/medium interface, cells were shaken for the whole culture duration and their expressed phenotype was compared with those expressed by static cultures. O2 and CO2 tensions were kept constant in the incubator atmosphere. Glycolysis and gluconeogenesis pathways, detoxication system, and mitochondrial, apical and basolateral membrane marker enzyme activities were assessed. This study showed that the induction of glycolysis which appear in primary cultures of proximal tubule cells may be partially prevented by continuously shaking the cultures. This effect was more marked in the presence of glucose, suggesting better substrate oxidation in shaken cultures.  相似文献   

17.
Summary The effects of a high carbohydrate diet on the renal gluconeogenic and glycolytic capacities and on the activities of the main enzymes of the carbohydrate metabolism, fructose 1,6-bisphosphatase, phosphofructokinase and pyruvate kinase have been studied. These parameters have been analysed in two separate and isolated fractions of the renal tubule, the proximal convoluted (PCT) and the distal convoluted (DCT) zones. The results presented in this study show a rapid adaptation capacity of the kidney in response to the high amount of dietary carbohydrate, which are characterized by a decrease in the glucose production and fructose 1,6-bisphosphatase activity in the proximal tubules, and an increase in the glycolytic flux and phosphofructokinase and pyruvate kinase activities in the distal tubules. The changes in these enzyme activities took place only at subsaturating substrate concentrations and not at maximum velocity which suggest that they are probably due to an allosteric and/or covalent modifications and so, they are independent of variations in the cellular levels of the enzymes.  相似文献   

18.
Transglutaminase 2 (TGase 2) expression and glycolysis are increased in most renal cell carcinoma (RCC) cell lines compared to the HEK293 kidney cell line. Although increased glycolysis and altered tricarboxylic acid cycle are common in RCC, the detailed mechanism by which this phenomenon occurs remains to be elucidated. In the present study, TGase 2 siRNA treatment lowered glucose consumption and lactate levels by about 20–30 % in RCC cells; conversely, high expression of TGase 2 increased glucose consumption and lactate production together with decreased mitochondrial aconitase (Aco 2) levels. In addition, TGase 2 siRNA increased mitochondrial membrane potential and ATP levels by about 20–30 % and restored Aco 2 levels in RCC cells. Similarly, Aco 2 levels and ATP production decreased significantly upon TGase 2 overexpression in HEK293 cells. Therefore, TGase 2 leads to depletion of Aco 2, which promotes glycolytic metabolism in RCC cells.  相似文献   

19.
BACKGROUND: GLP-1 is secreted into the circulation after food intake. The main biological effects of GLP-1 include stimulation of glucose dependent insulin secretion and induction of satiety feelings. Recently, it was demonstrated in rats and humans that GLP-1 can stimulate renal excretion of sodium. Based on these data, the existence of a renal GLP-1 receptor (GLP-1R) was postulated. However, the exact localization of the GLP-1R and the mechanism of this GLP-1 action have not yet been investigated. METHODS: Primary porcine proximal tubular cells were isolated from porcine kidneys. Expression of GLP-1R was measured at the mRNA level by quantitative RT-PCR. Protein expression of GLP-1R was verified with immunocytochemistry, immunohistochemistry and Western blot analysis. Functional studies included transport assessments of sodium and glucose using three different GLP-1 concentrations (200 pM, 2 nM and 20 nM), 200 pM exendin-4 (GLP-1 analogue) and an inhibitor of the dipeptidylpeptidase IV (DPPIV) enzyme (P32/98 at 10 microM). Finally, the expression of NHE3, the predominant Na(+)/H(+) exchanger in proximal tubular cells, was also investigated. RESULTS: GLP-1R, NHE3 and DPPIV were expressed at the mRNA level in porcine proximal tubular kidney cells. GLP-1R expression was confirmed at the protein level. Staining of human and pig kidney cortex revealed that GLP-1R was predominantly expressed in proximal tubular cells. Functional assays demonstrated an inhibition of sodium re-absorption with GLP-1 after 3 h of incubation. Exendin-4 and GLP-1 in combination with P32/98 co-administration had no clear influence on glucose and sodium uptake and transport. CONCLUSION: GLP-1R is functionally expressed in porcine proximal tubular kidney cells. Addition of GLP-1 to these cells resulted in a reduced sodium re-absorption. GLP-1 had no effect on glucose re-absorption. We conclude that GLP-1 modulates sodium homeostasis in the kidney most likely through a direct action via its GLP-1R in proximal tubular cells.  相似文献   

20.
Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号