首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The IQ-domain GTPase-activating protein 1 (IQGAP1) is a multifunctional scaffold protein, which interacts with diverse proteins to regulate cell adhesion and cell migration. The abnormal expression of IQGAP1 widely exists in many cancers, but biological roles of IQGAP1 cooperation with its interacting proteins to involve in tumorigenesis remain to clarify. In this study, we have found that IQGAP1 interacts with β-catenin and regulates β-catenin expression in hepatocellular carcinoma (HCC) cells. The expression levels of IQGAP1 and β-catenin and their associations have a positive correlation with cell metastasis ability in several HCC cell lines. The up-regulation of IQGAP1 and β-catenin improves cell proliferation and migration ability of HCC cells, whereas the knockdown of IQGAP1 by small interfering RNA can decrease β-catenin expression, which results in the reduction of cell proliferation and migration ability in vitro. In addition, a significantly higher expression of IQGAP1 and β-catenin also usually exists in human HCC tissues, especially their overexpression is clinicopathologically associated with tumor malignancy. Generally the overexpression and interactions of IQGAP1 and β-catenin contribute to HCC progression by promoting cell proliferation and migration.  相似文献   

2.
3.
Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.  相似文献   

4.
5.
6.
7.
Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.  相似文献   

8.
Circular RNAs have been reported to play essential roles in the tumorigenesis and progression of various cancers. However, the biological processes and mechanisms involved in hepatocellular carcinoma (HCC) remain unclear. Initial RNA-sequencing data and qRT-PCR results in our cohort showed that hsa_circ_0072309 (also called circLIFR) was markedly downregulated in HCC tissues. Kaplan–Meier analysis indicated that higher levels of circLIFR in HCC patients correlated with favorable overall survival and recurrence-free survival rates. Both in vitro and in vivo experiments indicated that circLIFR inhibited the proliferation and invasion abilities of HCC cells. We therefore conducted related experiments to explore the mechanism of circLIFR in HCC. Fluorescence in situ hybridization results revealed that circLIFR was mainly located in the cytoplasm, and RNA immunoprecipitation assays indicated that circLIFR was significantly enriched by Ago2 protein. These results suggested that circLIFR may function as a sponge of miRNAs to regulate HCC progression. We further conducted bioinformatics prediction as well as dual-luciferase reporter assays, and the results of which showed that circLIFR could sponge miR-624-5p to stabilize glycogen synthase kinase 3β (GSK-3β) expression. Loss and gain of function experiments demonstrated that regulation of the expression of miR-624-5p or GSK-3β markedly affected HCC progression induced by circLIFR. Importantly, we also proved that circLIFR could facilitate the degradation of β-catenin and prevent its translocation to the nucleus in HCC cells. Overall, our study demonstrated that circLIFR acts as a tumor suppressor in HCC by regulating miR-624-5p and inactivating the GSK-3β/β-catenin signaling pathway.Subject terms: Oncogenes, Liver cancer  相似文献   

9.
10.
Aimβ-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.MethodsGene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.ResultsSixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).ConclusionThis study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism.  相似文献   

11.
12.
Wnt/β-catenin signaling plays critical roles in embryonic development and disease. Here, we identify RNF220, a RING domain E3 ubiquitin ligase, as a new regulator of β-catenin. RNF220 physically interacts with β-catenin, but instead of promoting its ubiquitination and proteasomal degradation, it stabilizes β-catenin and promotes canonical Wnt signaling. Our analysis showed that RNF220 interacts with USP7, a ubiquitin-specific peptidase, which is required for RNF220 to stabilize β-catenin. The RNF220/USP7 complex deubiquitinates β-catenin and enhances canonical Wnt signaling. Interestingly, the stability of RNF220 itself is negatively regulated by Gsk3β, which is a key component of the β-catenin destruction complex and is inhibited upon Wnt stimulation. Accordingly, the RNF220/USP7 complex works as a positive feedback regulator of β-catenin signaling. In colon cancer cells with stimulated Wnt signaling, knockdown of RNF220 or USP7 impairs Wnt signaling and expression of Wnt target genes, suggesting a potentially novel role of RNF220 in Wnt-related tumorigenesis.  相似文献   

13.
14.
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway.  相似文献   

15.
Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/β-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/β-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in β-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and β-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/β-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.  相似文献   

16.
Cellular FLIP (cFLIP) is a close homologue of caspase 8 without caspase activity that inhibits Fas signaling. The cFLIP protein is often expressed in human tumors and is believed to suppress antitumor immune responses involving the Fas system. Here, we report that a long form of cFLIP (cFLIP-L) inhibits β-catenin ubiquitylation and increases endogenous cytosolic β-catenin, which results in translocation of β-catenin into nuclei and induction of β-catenin-dependent gene expression in cFLIP-L-expressing cells. When cells stably expressing cFLIP-L were stimulated with Wnt3a, enhanced Wnt signaling was observed compared with the control cells. Conversely, depletion of endogenous cFLIP results in reduced Wnt signaling. Furthermore, cFLIP-L increases secondary-body axis formation when coinjected with suboptimal doses of β-catenin into early Xenopus embryos. Down-regulation of FADD by RNA-mediated interference abolishes the β-catenin-dependent gene expression induced by cFLIP-L. These results indicate that cFLIP-L, in cooperation with FADD, enhances canonical Wnt signaling by inhibiting proteasomal degradation of β-catenin, thus suggesting an additional mechanism involved with tumorgenesis, in addition to inhibiting Fas signaling.  相似文献   

17.
An understanding of how synaptic vesicles are recruited to and maintained at presynaptic compartments is required to discern the molecular mechanisms underlying presynaptic assembly and plasticity. We have previously demonstrated that cadherin–β-catenin complexes cluster synaptic vesicles at presynaptic sites. Here we show that scribble interacts with the cadherin–β-catenin complex to coordinate vesicle localization. Scribble and β-catenin are colocalized at synapses and can be coimmunoprecipitated from neuronal lysates, indicating an interaction between scribble and β-catenin at the synapse. Using an RNA interference approach, we demonstrate that scribble is important for the clustering of synaptic vesicles at synapses. Indeed, in scribble knockdown cells, there is a diffuse distribution of synaptic vesicles along the axon, and a deficit in vesicle recycling. Despite this, synapse number and the distribution of the presynaptic active zone protein, bassoon, remain unchanged. These effects largely phenocopy those observed after ablation of β-catenin. In addition, we show that loss of β-catenin disrupts scribble localization in primary neurons but that the localization of β-catenin is not dependent on scribble. Our data supports a model by which scribble functions downstream of β-catenin to cluster synaptic vesicles at developing synapses.  相似文献   

18.
Both β-catenin and NF-κB have been implicated in our laboratory as candidate factors in driving proliferation in an in vivo model of Citrobacter rodentium (CR)-induced colonic crypt hyper-proliferation and hyperplasia. Herein, we test the hypothesis that β-catenin and not necessarily NF-κB regulates colonic crypt hyperplasia or tumorigenesis in response to CR infection. When C57Bl/6 wild type (WT) mice were infected with CR, sequential increases in proliferation at days 9 and 12 plateaued off at day 19 and paralleled increases in NF-κB signaling. In Tlr4−/− (KO) mice, a sequential but sustained proliferation which tapered off only marginally at day 19, was associated with TLR4-dependent and independent increases in NF-κB signaling. Similarly, increases in either activated or total β-catenin in the colonic crypts of WT mice as early as day 3 post-infection coincided with cyclinD1 and c-myc expression and associated crypt hyperplasia. In KO mice, a delayed kinetics associated predominantly with increases in non-phosphorylated (active) β-catenin coincided with increases in cyclinD1, c-myc and crypt hyperplasia. Interestingly, PKCζ-catalyzed Ser-9 phosphorylation and inactivation of GSK-3β and not loss of wild type APC protein accounted for β-catenin accumulation and nuclear translocation in either strain. In vitro studies with Wnt2b and Wnt5a further validated the interplay between the Wnt/β-catenin and NF-κB pathways, respectively. When WT or KO mice were treated with nanoparticle-encapsulated siRNA to β-catenin (si- β-Cat), almost complete loss of nuclear β-catenin coincided with concomitant decreases in CD44 and crypt hyperplasia without defects in NF-κB signaling. si-β-Cat treatment to Apc Min/+ mice attenuated CR-induced increases in β-catenin and CD44 that halted the growth of mutated crypts without affecting NF-κB signaling. The predominant β-catenin-induced crypt proliferation was further validated in a Castaneus strain (B6.CAST.11M) that exhibited significant crypt hyperplasia despite an attenuated NF-κB signaling. Thus, β-catenin and not necessarily NF-κB regulates crypt hyperplasia in response to bacterial infection.  相似文献   

19.
IQGAPs are multidomain scaffolding proteins that integrate Rho GTPase and Ca2+/calmodulin signals with cell adhesive and cytoskeletal reorganizational events. Targeted disruption of the murine Iqgap2 gene resulted in the age-dependent development of apoptosis and hepatocellular carcinoma (HCC), characterized by the overexpression of IQGAP1, the loss of membrane E-cadherin expression, the cytoplasmic translocation (and activation) of β-catenin, and the overexpression of a nuclear target of β-catenin, cyclin D1. In normal hepatocytes, IQGAP2 was found to exist as one component of a multifunctional scaffolding complex comprising IQGAP1, β-catenin, and E-cadherin, with no evidence for direct IQGAP1-IQGAP2 interactions. Interbreeding of Iqgap2−/− mice into the Iqgap1−/− background resulted in the phenotypic correction of the preexisting hepatopathy, decreases in the incidence and sizes of HCC tumors, and the normalization of overall survival rates compared to those of Iqgap2−/− mice, suggesting that maximal penetrance of the Iqgap2−/− HCC phenotype requires the coordinate expression of IQGAP1. These results identify Iqgap2 as a novel tumor suppressor gene specifically linked to the development of HCC and the activation of the Wnt/β-catenin signaling pathway, while also suggesting that IQGAP1 and IQGAP2 retain functionally divergent roles in hepatocellular carcinogenesis.  相似文献   

20.

Background

The β-catenin is an important effector in WNT/β-catenin signaling pathway, which exerts a crucial role in the development and progression of hepatocellular carcinoma (HCC). Some researchers have suggested that the overexpression of β-catenin in cytoplasm and/or nucleus was closely correlated to metastasis, poor differentiation and malignant phenotype of HCC while some other researchers hold opposite point. So far, no consensus was obtained on the prognostic and clinicopathological significance of cytoplasmic/nuclear β-catenin overexpression for HCCs.

Methods

Systematic strategies were applied to search eligible studies in all available databases. Subgroup analyses, sensitivity analyses and multivariate analysis were performed. In this meta-analysis, we utilized either fixed- or random-effects model to calculate the pooled odds ratios (OR) and its 95% confidence intervals (CI).

Results

A total of 22 studies containing 2334 cases were enrolled in this meta-analysis. Pooled data suggested that accumulation of β-catenin in cytoplasm and/or nucleus significantly correlated with poor 1-, 3- and 5-year OS and RFS. Moreover, nuclear accumulation combined with cytoplasmic accumulation of β-catenin tended to be associated with dismal metastasis and vascular invasion while cytoplasmic or nuclear expression alone showed no significant effect. Besides, no significant association was observed between cytoplasmic and/or nuclear β-catenin expression and poor differentiation grade, advanced TNM stage, liver cirrhosis, tumor size, tumor encapsulation, AFP and etiologies. Additional subgroup analysis by origin suggested that the prognostic value and clinicopathological significance of cytoplasmic and/or nuclear β-catenin expression was more validated in Asian population. Multivariate analyses of factors showed that cytoplasmic and/or nuclear β-catenin expression, as well as TNM stage, metastasis and tumor size, was an independent risk factors for OS and RFS.

Conclusions

Cytoplasmic and/or nuclear accumulation of β-catenin, as an independent prognostic factor, significantly associated with poor prognosis and deeper invasion of HCC, and could serve as a valuable prognostic predictor for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号