首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines.  相似文献   

2.
Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation.  相似文献   

3.
The major cluster of disease resistance genes in lettuce (Lactuca sativa) contains at least nine downy mildew resistance genes (Dm) spanning a genetic distance of 20 cM and a physical distance of at least 6 Mb. Nine molecular markers that were genetically tightly linked toDm3 were used to analyze nine independent deletion mutants and construct a map of the region surroundingDm3. This analysis identified a linear order of deletion breakpoints and markers along the chromosome. There was no evidence for chromosomal rearrangements associated with the deletions. The region is not highly recombinagenic and the deletion breakpoints provided greater genetic resolution than meiotic recombinants. The region contains a mixture of high- and low-copy-number sequences; no single-copy sequences were detected. Three markers hybridized to low-copy-number families of sequences that are duplicated predominantly close toDm3. This was not true for sequences related to the triose-phosphate isomerase gene; these had been shown previously to be linked toDm3, as well as to two independent clusters ofDm genes, and elsewhere in the genome. Two spontaneous mutants ofDm3 were identified; several markers flankingDm3 are absent in one of these two mutants. The stability of theDm3 region was also studied by analyzing the genotypes of diverse related cultivars. The 1.5 Mb region surroundingDm3 has remained stable through many generations of breeding with and without selection forDm3 activity.  相似文献   

4.
Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of ~18 kb of sequence from the human genome and ~15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.  相似文献   

5.
The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES.  相似文献   

6.
Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative.In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated.Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction.The first step is to prepare haploid single-mutants termed ''ProMonsters,'' each of which carries a GFP reporter in a deleted locus and one of the ''toolkit'' loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids.The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.  相似文献   

7.
Gametocidal (Gc) genes of Aegilops in the background of the wheat genome lead to breakage of wheat chromosomes. The Q gene of wheat was used as a marker to select 19 deletion lines for the long arm of chromosome 5A of common wheat, Triticum aestivum cv. Chinese Spring (CS). The extents of deleted segments were cytologically estimated by the C-banding technique. The DNAs of deletion lines were hybridized with 22 DNA probes recognizing sites on the long arm of the chromosome (5AL) to determine their physical order. Based on the breeding behavior of the deletion lines, the location of a novel gene (Pv, pollen viability) affecting the viability of the male gamete was deduced. The segment translocated from 4AL to 5AL in CS was cytologically estimated to represent 13% of the total length of 5AL. Although DNA markers were almost randomly distributed along the chromosome arm, DNA markers located around the centromere and C-banded regions were obtained only rarely. Some deletion lines were highly rearranged in chromosome structure due to the effect(s) of the Gc gene. Applications of Gc genes for manipulating wheat chromosomes are discussed.  相似文献   

8.
Counterselectable markers are powerful tools in genetics because they allow selection for loss of a genetic marker rather than its presence. In mycobacteria, a widely used counterselectable marker is the gene encoding levan sucrase (sacB), which confers sensitivity to sucrose, but frequent spontaneous inactivation complicates its use. Here we show that the Escherichia coli galactokinase gene (galK) can be used as a counterselectable marker in both Mycobacterium smegmatis and Mycobacterium tuberculosis. Expression of E. coli galK, but not the putative M. tuberculosis galK, conferred sensitivity to 2-deoxy-galactose (2-DOG) in both M. smegmatis and M. tuberculosis. We tested the utility of E. coli galK as a counterselectable marker in mycobacterial recombination, both alone and in combination with sacB. We found that 0.5% 2-DOG effectively selected recombinants that had lost the galK marker with the ratio of galK loss/galK mutational inactivation of approximately 1:4. When we combined galK and sacB as dual counterselectable markers and selected for dual marker loss on 0.2% 2-DOG/5% sucrose, 98.6–100% of sucrose/2-DOG resistant clones had undergone recombination, indicating that the frequency of mutational inactivation of both markers was lower than the recombination frequency. These results establish a new counterselectable marker system for use in mycobacteria that can shorten the time to generate unmarked mutations in M. smegmatis and M. tuberculosis.  相似文献   

9.
The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutations in bacteria. Here, we demonstrate that pyrF, a gene encoding orotidine-5′-monophosphate decarboxylase, can be used as a counterselectable marker in T. denticola to construct marker-free mutants. T. denticola is susceptible to 5-fluoroorotic acid (5-FOA). To establish a pyrF-based counterselectable knockout system in T. denticola, the pyrF gene was deleted. The deletion conferred resistance to 5-FOA in T. denticola. Next, a single-crossover mutant was constructed by reintroducing pyrF along with a gentamicin resistance gene (aacC1) back into the chromosome of the pyrF mutant at the locus of choice. In this study, we chose flgE, a flagellar hook gene that is located within a large polycistronic motility gene operon, as our target gene. The obtained single-crossover mutant (named FlgEin) regained the susceptibility to 5-FOA. Finally, FlgEin was plated on solid agar containing 5-FOA. Numerous colonies of the 5-FOA-resistant mutant (named FlgEout) were obtained and characterized by PCR and Southern blotting analyses. The results showed that the flgE gene was deleted and FlgEout was free of selection markers (i.e., pyrF and aacC1). Compared to previously constructed flgE mutants that contain an antibiotic selection marker, the deletion of flgE in FlgEout has no polar effect on its downstream gene expression. The system developed here will provide us with a new tool for investigating the genetics and pathogenicity of T. denticola.  相似文献   

10.
The emerging invasive fungal pathogen Aspergillus fumigatus causes very serious infections among immunocompromised patient populations. While the genome of this pathogen has been sequenced, a major barrier to better understanding the complex biology of this eukaryotic organism is a lack of tools for efficient genetic manipulation. To improve upon this, we have generated a new gene deletion system for A. fumigatus using yeast recombinational cloning and Agrobacterium tumefaciens mediated transformation (ATMT) employing a recyclable marker system. This system reduced the time for generating a gene deletion strain in our hands by two-thirds (12 weeks to 3 weeks) using minimal human labor, and we demonstrate that it can be used to efficiently generate multiple gene deletions within a single strain.  相似文献   

11.
We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ~77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly useful for balancing difficult regions of the genome carrying haplo-insufficient loci. We describe a simple computational resource that facilitates selection of appropriate elements for generating custom deletions. Finally, we provide a computational resource that facilitates selection of other mapped FRT-bearing elements that, when combined with the DrosDel collection, can theoretically generate over half a million precisely mapped deletions.  相似文献   

12.
Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the Haploid Engineering and Replacement Protocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.  相似文献   

13.
Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261–357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.Subject terms: Soil microbiology, Molecular evolution  相似文献   

14.

Background

Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome.

Results

A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes.

Conclusions

Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.  相似文献   

15.
Zinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site. The generation of obligate heterodimeric ZFNs was shown to significantly reduce ZFN-associated cytotoxicity in single-site genome editing strategies. To further expand the application range of ZFNs, we employed a combination of in silico protein modeling, in vitro cleavage assays, and in vivo recombination assays to identify autonomous ZFN pairs that lack cross-reactivity between each other. In the context of ZFNs designed to recognize two adjacent sites in the human HOXB13 locus, we demonstrate that two autonomous ZFN pairs can be directed simultaneously to two different sites to induce a chromosomal deletion in ∼10% of alleles. Notably, the autonomous ZFN pair induced a targeted chromosomal deletion with the same efficacy as previously published obligate heterodimeric ZFNs but with significantly less toxicity. These results demonstrate that autonomous ZFNs will prove useful in targeted genome engineering approaches wherever an application requires the expression of two distinct ZFN pairs.  相似文献   

16.
Deletions of regions at 13q14 have been detected by various genetic approaches in human cancers including prostate cancer. Several studies have defined one region of loss of heterozygosity (LOH) at 13q14 that seems to reside in a DNA segment of 7.1 cM between genetic markers D13S263 and D13S153. To define the smallest region of overlap (SRO) for deletion at 13q14, we first applied tissue microdissection and multiplex PCR to detect homozygous deletion and/or hemizygous deletion at 13q14 in 134 prostate cancer specimens from 114 patients. We detected deletions at markers D13S1227, D13S1272, and A005O48 in 13 (10%) of these tumor specimens. Of the 13 tumors with deletions, 12 were either poorly differentiated primary tumors or metastases of prostate cancer. To fine-map the deletion region, we then constructed a high-resolution YAC/BAC/STS/EST physical map based on experimental and database analyses. Several markers encompassing the deletion region were analyzed for homozygous deletion and/or hemizygous deletion in 61 cell lines/xenografts derived from human cancers of the prostate, breast, ovary, endometrium, cervix, and bladder, and a region of deletion was defined by duplex PCR assay between markers A005X38 and WI-7773. We also analyzed LOH at 13q14 in the 61 cell lines/xenografts using the homozygosity mapping of deletion approach and 26 microsatellite markers. We found 24 (39%) of the cell lines/xenografts to show LOH at 13q14 and defined a region of LOH by markers M1 and M5. Combination of homozygous or hemizygous deletion and LOH results defined the SRO for deletion to be an 800-kb DNA interval between A005X38 and M5. There are six known genes located in or close to the SRO for deletion. This region of deletion is at least 2 Mb centromeric to the RB1 tumor-suppressor gene and the leukemia-associated genes 1 and 2, each of which is located at 13q14. These data suggest that the 800-kb DNA segment with deletion contains a gene whose deletion may be important for the development of prostate and other cancers. This study also provides a framework for the fine-mapping, cloning, and identification of a novel tumor-suppressor gene at 13q14.  相似文献   

17.
Zhang J  Peterson T 《Genetics》2005,171(1):333-344
Certain configurations of maize Ac/Ds transposon termini can undergo alternative transposition reactions leading to chromosome breakage and various types of stable chromosome rearrangements. Here, we show that a particular allele of the maize p1 gene containing an intact Ac element and a nearby terminally deleted Ac element (fAc) can undergo sister-chromatid transposition (SCT) reactions that generate large flanking deletions. Among 35 deletions characterized, all begin at the Ac termini in the p1 gene and extend to various flanking sites proximal to p1. The deletions range in size from the smallest of 12,567 bp to the largest of >4.6 cM; >80% of the deletions removed the p2 gene, a paralog of p1 located ~60 kb from p1 in the p1-vv allele and its derivatives. Sequencing of representative cases shows that the deletions have precise junctions between the transposon termini and the flanking genomic sequences. These results show that SCT events can efficiently generate interstitial deletions that are useful for in vivo dissection of local genome regions and for the rapid correlation of genetic and physical maps. Finally, we discuss evidence suggesting that deletions induced by alternative transposition reactions can occur at other genomic loci, indicating that this mechanism may have had a significant impact on genome evolution.  相似文献   

18.
Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5′-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79–N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector.  相似文献   

19.
Although the locations of many common deletion variants in the human genome are unknown, such deletions may be causative in rare disorders. Deletions can be mapped through the identification of Mendelian inconsistencies in pedigrees. Data for a total of 341,577 SNPs from an ACD family cohort (n = 551) and 341,039 SNPs from a Korean-Vietnamese family cohort (n = 554) were collected for a genome-wide association study using Illumina 370K-Duo Beadchips®. In the present study, a Mendelian inconsistency analysis of genotype data identified 1029 deletion variants in Korean and Korean-Vietnam family cohorts of 404 trios comprising 1105 individuals. Small-deletion copy number variations adjacent to 10 deletion variants were then validated by the real-time quantitative polymerase chain reaction. The expected copy numbers of each deletion variant were directly matched to its genotype cluster image. Deletion variants were also in strong linkage disequilibrium with nearby SNPs. To determine the overall contribution of the 1029 deletion variants, we analyzed case-control trio associations with the risk for Avellino corneal dystrophy. One SNP marker (rs885945) neighboring the gene encoding major histocompatibility complex class I F (HLA-F) was significantly associated with the risk of Avellino corneal dystrophy (P = 0.0003). rs885945 showed high LD with SNPs within the HLA-F gene. Therefore, HLA-F may be a potential candidate gene for Avellino corneal dystrophy.  相似文献   

20.
A precise and scarless genome excision method, employing the Cre/loxP system in concert with double-strand break (DSB)-stimulated intramolecular recombination was developed. The DSBs were mediated by the restriction endonuclease, I-SceI. It permitted multiple deletions of independent 14-, 43-, and 10-kb-long genomic regions on the Corynebacterium glutamicum genome. Accuracy of deletion was confirmed by the loss of marker genes, PCR, and sequencing of new genome joints. Eleven, 58, and 4 genes were predicted on the 14-, 43-, and 10-kb deleted regions, respectively. Although the resultant mutant lost a total of 67 kb encoding 73 genes, it still exhibited normal growth under standard laboratory conditions. Such a large segment deletion method in which multiple, successive deletions are possible is useful for genome engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号