首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect larval characteristics, including chaetotaxy, are used widely in systematics, including for classification and phylogenetic reconstruction. Despite their common use, basic aspects of larval morphology, including intraspecific variation, effects of relatedness between individuals, sex and asymmetry, are little investigated. In the larvae of the noctuid moth Orthosia gothica, properties of shape and size were separated to examine their effects separately. Siblings were found not to cover the entire variation of a population, and therefore specimens originating from a single female do not represent independent samples. This methodological bias may potentially lead to wrong conclusions regarding species characteristics. We observed slight differences between the left and right sides of the specimens studied, implying that one side should be examined consistently in studying larval chaetotaxy. We found no differences between sexes, but this may apply only to the species examined here; in general, sex should be determined and accounted for. We discovered considerable variation in seta numbers, which further emphasizes the importance of sufficient material, particularly in cladistic analyses in which setal counts are often used as characters.  相似文献   

2.
Abstract. The morphology and chaetotaxy of the first instar larvae of six species belonging to the genera Hipparchia, Kanetisa and Chazara are described. Specific characters are stated, drawn mainly from size, setal length and morphology, and the shape of the suranal plate. Several characters, other than chaetotaxy, that are of potential use in nymphalid systematics are discussed. The larval chaetotaxy is briefly compared with that of both heliconiine and danaine first instar larvae.  相似文献   

3.
Many have argued strongly that incorporation of evolutionary theory into systematics is dangerously circular, while others have maintained that such an integrated approach increases the accuracy of phylogenetic inference. Here, it is demonstrated that such blanket statements regarding exclusion or inclusion of evolutionary principles in systematics fail to distinguish between two very different types of principles. ‘Phylogeny-neutral’ evolutionary principles are those inferred without any recourse to specific phylogenetic hypotheses (e.g. via developmental genetics, biomechanics). In contrast, ‘phylogeny-dependent’ principles are those which can only be inferred on the basis of specific phylogenetic hypotheses (e.g. character associations detected via ‘comparative methods’). Inclusion of phylogeny-neutral principles in systematic studies as a priori assumptions can be justified, since these principles have (often strong) external empirical support from other spheres of investigation. However, inclusion of phylogeny-dependent principles in systematic studies is circular, since such principles have no external empirical support but are themselves derived from systematic studies. Advocating inclusion or exclusion of all (or as many as possible) evolutionary principles from phylogenetic analysis is therefore misguided. Rather, phylogeny-neutral principles are independently supported and can be included, while phylogeny-dependent principles are unjustified assumptions and should be excluded to avoid circularity. However, integration of complex phylogeny-neutral principles in systematics can create operational problems, even though there are no methodological reasons against their inclusion.  相似文献   

4.
Practicing phylogenetic systematics as a sophisticated falsification research program provides a basis for claiming increased knowledge of sister species relationships and synapomorphies as evidence for those cladistic propositions. Research in phylogenetic systematics is necessarily cyclic, and the place where the positive shift in understanding occurs is subsequent to discovering the most parsimonious cladogram(s). A priori differential character weighting is inconsistent with seeking the maximally corroborated cladogram (sensu Popper), because weighting adds to background knowledge, the evidence being then less improbable than it would be otherwise. Also, estimating weights from character state frequencies on a cladogram is inconsistent with the view that history is unique. Sophisticated falsification provides the place in the cycle of phylogenetic systematic research where weight of evidence can be evaluated and these inconsistencies do not apply. On balance, phylogenetic systematics appears to achieve greater coherence and generality as a result of focusing on the foundations for claiming increased knowledge and avoiding efforts to differentially weight characters.  相似文献   

5.
6.
A brief history of comparative studies of nucleic acids for systematic purposes is given. These studies were initiated by a group of Moscow State University scientists headed by A. N. Belozersky. Based mostly on comparative DNA studies, some main dogmas of a new branch of systematics were gradually developed. In Russia, this new branch of systematics is called "genosystematics". Some of the main results obtained by genosystematics since its birth (1957) and up to its "christening" (1974) are described.  相似文献   

7.
This article introduces a special issue on zebrafish biology that attempts to integrate developmental genetics with comparative studies of other fish species. For zebrafish researchers, comparative work offers a better understanding of the evolutionary history of their model system. Comparative biologists can gain many insights from the developmental and genetic mechanisms revealed in zebrafish that have contributed to the huge range of morphological variation among fishes that has arisen over millions of years. These ideas are considered here in various contexts, including systematics, genome organization and the development of the nervous system, pigmentation, craniofacial skeleton and dentition. Studies of the zebrafish in phylogenetic context provide an opportunity for synergy between communities using these two fundamentally different approaches.  相似文献   

8.
The present paper is an argument in support of the continued importance of morphological systematics and a plea for improving molecular phylogenetic analyses by addressing explicit character transformations. We use here the inference of key innovations and adaptive radiations to demonstrate why morphological systematics is still relevant and necessary. After establishing that theories of phylogenetic relationship offer robust explanatory bases for discussing evolutionary diversification, the following topics are addressed: (1) the inference of key innovations grounded in phylogenetic analyses; (2) the epistemic distinction between character ‘mapping’ and relevant evidence in systematic and evolutionary studies; and (3) key innovations in molecular phylogenetics. We emphasize that the discovery of key innovations, in fossil or extant taxa, further strengthens the importance of morphology in systematic and evolutionary inferences, as they reveal scenarios of character transformation that have led to asymmetrical sister-group diversification. Our main conclusion is that understanding characters in and of themselves, when properly contextualized systematically, is what evolutionary biologists should be concerned with, whereas the analysis of tree topology alone, in which statistical nodal support measures are the sole indicators of phylogenetic affinity, does not lead to a fuller understanding of key innovations.  相似文献   

9.
Several ways in which morphology is used in systematic and evolutionary research in angiosperms are shown and illustrated with examples: 1) searches for special structural similarities, which can be used to find hints for hitherto unrecognized relationships in groups with unresolved phylogenetic position; 2) cladistic studies based on morphology and combined morphological and molecular analyses; 3) comparative morphological studies in new, morphologically puzzling clades derived from molecular studies; 4) studies of morphological character evolution, unusual evolutionary directions, and evolutionary lability based on molecular studies; and 5) studies of organ evolution. Conclusions: Goals of comparative morphology have shifted in the present molecular era. Morphology no longer plays the primary role in phylogenetic studies. However, new opportunities for morphology are opening up that were not present in the premolecular era: 1) phylogenetic studies with combined molecular and morphological analyses; 2) reconstruction of the evolution of morphological features based on molecularly derived cladograms; 3) refined analysis of morphological features induced by inconsistencies of previous molecular and molecular phylogenetic analyses; 4) better understanding of morphological features by judgment in a wider biological context; 5) increased potential for including fossils in morphological analyses; and 6) exploration of the evolution of morphological traits by integration of comparative structural and molecular developmental genetic aspects (Evo-Devo); this field is still in its infancy in botany; its advancement is one of the major goals of evolutionary botany.  相似文献   

10.
Recent phylogenetic research indicates that vascular plants evolved from bryophyte-like ancestors and that this involved extensive modifications to the life cycle. These conclusions are supported by a range of systematic data, including gene sequences, as well as evidence from comparative morphology and the fossil record. Within vascular plants, there is compelling evidence for two major clades, which have been termed lycophytes (clubmosses) and euphyllophytes (seed plants, ferns, horsetails). The implications of recent phylogenetic work are discussed with reference to life cycle evolution and the interpretation of stratigraphic inconsistencies in the early fossil record of land plants. Life cycles are shown to have passed through an isomorphic phase in the early stages of vascular plant evolution. Thus, the gametophyte generation of all living vascular plants is the product of massive morphological reduction. Phylogenetic research corroborates earlier suggestions of a major representational bias in the early fossil record. Mega-fossils document a sequence of appearance of groups that is at odds with that predicted by cladogram topology. It is argued here that the pattern of appearance and diversification of plant megafossils owes more to changing geological conditions than to rapid biological diversification.  相似文献   

11.
We present a phylogenetic and taxonomic study of the morphology and biology of the terminal‐instar larval stage of 19 species representing all the genera of Torymidae parasitoids of gall wasps in Europe, with the single exception of Megastigmus. The genera studied include Adontomerus Nikol'skaya, Idiomacromerus Crawford, Chalcimerus Steffan & Andriescu, Glyphomerus Förster, Pseudotorymus Masi and Torymus Dalman. We primarily used chaetotaxy and some head structures. The terminal‐instar larvae of all studied species are thoroughly described for the first time and illustrated with SEM images. We provide diagnostic characters for the family and the genera studied, and keys to genera and species for the identification of torymid larvae associated with cynipid galls. The majority of the torymid larvae studied are solitary monophagous parasitoids. Finally, to assess the potential use of larval characters in systematic studies of the family, a phylogenetic analysis of the studied taxa based on 42 larval morphological characters is proposed and compared with the current taxonomy of Torymidae. Our results suggest that body chaetotaxy, and characters of the head and mouthparts could be used for genera and species discrimination. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 676–721.  相似文献   

12.
Celebrating 300 years since the birth of Carl Linnaeus (1707-1778), a meeting was held in June 2007 to review recent progress made in understanding the origins and evolutionary radiation of the animals. The year 2008 celebrates the 250th anniversary of the publication of the 10th edition of Linnaeus' Systema Naturae, generally considered to be the starting point of zoological nomenclature. With subsequent advances in comparative taxonomic and systematic studies, Darwin's discovery of evolution by natural selection, the birth of phylogenetic systematics, and the wider interest in biodiversity, it is salutary to consider that many of the major advances in our understanding of animal evolution have been made in recent years. Phylogenetic systematics, drawing from evidence provided by genotype, phenotype and an understanding of the link between them through comparative embryological and evolutionary developmental studies, has provided a wide consensus of the major branching patterns of the tree of life. More importantly, the integrated approaches discussed in the 16 contributions to this volume highlight the identity and nature of problematic taxa, the missing data, errors in existing analytical procedures and the promise of a wealth of additional characters from genomes that need to be accumulated and assessed in providing a definitive Systema Naturae.  相似文献   

13.
Platyhelminth systematics and the emergence of new characters   总被引:1,自引:0,他引:1  
Since the inclusion of molecular data in modern phylogenetic analyses, significant progress in resolving the origins and radiation of flatworms has been made, although some key problems remain. Here I review developments in the supply and use of systematic characters that provide the basis for diagnosis and phylogeny reconstruction, that in turn have driven systematic revisions and the interpretation of broader evolutionary patterns and processes; focus is placed on the parasitic taxa. Although useful tools have been refined to the point of becoming established systematic markers of broad utility, attention to the need for denser gene and taxon sampling is addressed in the light of unresolved questions and current trends in molecular systematics, from nucleotide to genome. Tradition and the nature of available comparative information tends to dictate the choice of systematic markers, but faced with incongruent phylogenies, the emergence of new technologies and the need for rapid species diagnosis, there is a pressing need to assess and standardize our choice of tools so they are fit for purpose, available to all and used widely. I present a brief review of existing and potential sources of phylogenetic characters and discuss their likely value in the context of the systematics and diagnostics of parasitic flatworms.  相似文献   

14.
被子植物系统学中花发育研究的进展及对今后研究的思考   总被引:20,自引:0,他引:20  
从花发育研究的方法、花发育与被子植物花部结构的多样性、花发育与被子植物的系统发育以及 花发育的分子遗传学等四个方面对近年来被子植物系统学中花发育研究的主要进展作一综述,例举了 一些重要结果。同时,对该领域今后研究的方向和应注意的一些问题作了简要评论。作者认为植物的 形态结构可以看作是一个时空过程,在系统学研究中对花部性状的分析和认识应该树立动态的观点。 今后应该从动态的角度开展被子植物花的发生和发育以及性状在不同类群间的比较等方面的广泛研究,并加强对在被子植物花的起源和演化中起重要作用的花部同源异型现象的发育过程的观察。  相似文献   

15.
鞘翅目昆虫核酸分子系统学研究现状   总被引:1,自引:0,他引:1  
张迎春  付景 《昆虫知识》2006,43(2):169-176
从研究对象、研究种类、研究内容等方面对鞘翅目Coleoptera核酸分子系统学研究的近况进行了总结和分析,研究中应用的技术主要有DNA序列分析、RELP技术、RAPD技术、AFLP技术、分子杂交技术和SSCD技术。并认为这些技术的应用对补充和完善传统分类方法,深入探讨各类群的分类地位和系统发育关系具有重要作用。  相似文献   

16.
With the advent of new methods and techniques, floral development has been ex tensively studied in many groups of angiosperms recently. These studies have resulted in notable progress and greatly increased our knowledge about the diversity of floral structure and developmental patterns as well as phylogenetic relationship of angiosperms. This field is be coming an active and exciting one in systematics of flowering plants. The present paper re viewed this progress from four aspects: (1) the methods of studies on floral development; (2) floral development and the diversity of floral structure; (3) floral development and phylogeny of angiosperms; (4) molecular genetics of floral development. In addition, several future directions and some problems needing attention in this field are discussed: (1) extensive studies on floral developmental studies of extensive species of angiosperms and comparison of floral structures among them; (2) research of floral development of homeotic flowers as well as their systematic and evolutionary value; (3) floral structure should be studied from the viewpoint of dynamics, because the structure of plants can be seen as a spatio-temporal pro- cess, and the use of structural categories in systematics may distort the natural dynamics.  相似文献   

17.
The past 30 years have seen a revolution in comparative biology. Before that time, systematics was not at the forefront of the biological sciences, and few scientists considered phylogenetic relationships when investigating evolutionary questions. By contrast, systematic biology is now one of the most vigorous disciplines in biology, and the use of phylogenies not only is requisite in macroevolutionary studies but also has been applied to a wide range of topics and fields that no one could possibly have envisioned 30 years ago. My message is simple: phylogenies are fundamental to comparative biology, but they are not the be-all and end-all. Phylogenies are powerful tools for understanding the past, but like any tool, they have their limitations. In addition, phylogenies are much more informative about pattern than they are about process. The best way to fully understand the past-both pattern and process-is to integrate phylogenies with other types of historical data as well as with direct studies of evolutionary process.  相似文献   

18.
Abstract. The chaetotaxy of the first instar larva of Danaus gilippus is described in detail. Comparisons are made with several other danaine species and with the heliconiine Heliconius melpomene. A new nomenclature for the setae of abdominal segment 10 is proposed and a comparison made with that of Singh (1951). The potential use of chaetotaxy in butterfly systematics is discussed.  相似文献   

19.
Lehtonen S 《PloS one》2011,6(10):e24851
In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a 'supermatrix' approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.  相似文献   

20.
哺乳动物是一类最进化并在地球上占主导地位的动物类群,重建其系统发育关系一直是分子系统学的研究热点。随着越来越多物种全基因组测序的完成,在基因组水平上探讨该类动物的系统发育关系与进化成为研究的热点。本文从全基因组序列,稀有基因组变异及染色体涂染等几个方面简要介绍了当前系统发育基因组学在现生哺乳动物分子系统学中的应用,综合已有的研究归纳整理了胎盘亚纲的总目及目间的系统发育关系,给出了胎盘动物19 个目的系统发育树。本文还分析了哺乳动物系统发育基因组学目前所面临的主要问题及未来的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号