首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pol kappa and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Pol kappa. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Pol zeta) and with two other Y-family polymerases, Pol iota and Pol eta. Mouse Pol kappa, Rev7, Pol iota and Pol eta each bind to the same approximately 100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Pol kappa for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Pol kappa, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined.  相似文献   

2.
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.  相似文献   

3.
Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows replicative bypass of DNA lesions, including DNA adducts formed by cancer chemotherapeutics. Previous studies demonstrated that suppression of TLS can increase sensitivity of cancer cells to first-line chemotherapeutics and decrease mutagenesis linked to the onset of chemoresistance, marking the TLS pathway as an emerging therapeutic target. TLS is mediated by a heteroprotein complex consisting of specialized DNA polymerases, including the Y-family DNA polymerase Rev1. Previously, we developed a screening assay to identify the first small molecules that disrupt the protein–protein interaction between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) present in multiple DNA polymerases involved in TLS. Herein we report additional hit scaffolds that inhibit this key TLS PPI. In addition, through a series of biochemical, computational, and cellular studies we have identified preliminary structure–activity relationships and determined initial pharmacokinetic parameters for our original hits.  相似文献   

4.
The Saccharomyces cerevisiae REV3/7-encoded polymerase zeta and Rev1 are central to the replicative bypass of DNA lesions, a process called translesion synthesis (TLS). While yeast polymerase zeta extends from distorted DNA structures, Rev1 predominantly incorporates C residues from across a template G and a variety of DNA lesions. Intriguingly, Rev1 catalytic activity does not appear to be required for TLS. Instead, yeast Rev1 is thought to participate in TLS by facilitating protein-protein interactions via an N-terminal BRCT motif. In addition, higher eukaryotic homologs of Rev1 possess a C terminus that interacts with other TLS polymerases. Due to a lack of sequence similarity, the yeast Rev1 C-terminal region, located after the polymerase domain, had initially been thought not to play a role in TLS. Here, we report that elevated levels of the yeast Rev1 C terminus confer a strong dominant-negative effect on viability and induced mutagenesis after DNA damage, highlighting the crucial role that the C terminus plays in DNA damage tolerance. We show that this phenotype requires REV7 and, using immunoprecipitations from crude extracts, demonstrate that, in addition to the polymerase-associated domain, the extreme Rev1 C terminus and the BRCT region of Rev1 mediate interactions with Rev7.  相似文献   

5.
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.  相似文献   

6.
Rev1, a member of the Y family of DNA polymerases, functions in lesion bypass together with DNA polymerase zeta (Pol zeta). Rev1 is a highly specialized enzyme in that it incorporates only a C opposite template G. While Rev1 plays an indispensable structural role in Pol zeta-dependent lesion bypass, the role of its DNA synthetic activity in lesion bypass has remained unclear. Since interactions of DNA polymerases with the DNA minor groove contribute to the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, here we examine the possibility that unlike other DNA polymerases, Rev1 does not come into close contact with the minor groove of the incipient base pair, and that enables it to incorporate a C opposite the N(2)-adducted guanines in DNA. To test this idea, we examined whether Rev1 could incorporate a C opposite the gamma-hydroxy-1,N(2)-propano-2'deoxyguanosine DNA minor-groove adduct, which is formed from the reaction of acrolein with the N(2) of guanine. Acrolein, an alpha,beta-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from other oxidation reactions. We show here that Rev1 efficiently incorporates a C opposite this adduct from which Pol zeta subsequently extends, thereby completing the lesion bypass reaction. Based upon these observations, we suggest that an important role of the Rev1 DNA synthetic activity in lesion bypass is to incorporate a C opposite the various N(2)-guanine DNA minor-groove adducts that form in DNA.  相似文献   

7.
DNA ends are generated during double-strand-break repair and recombination. A p70-p86 heterodimer, Ku, accounts for the DNA end binding activity in eukaryotic cell extracts. When one or both subunits of Ku are missing, mammalian cells are deficient in double-strand-break repair and in specialized recombination, such as V(D)J recombination. Little is known of which regions of Ku70 and Ku86 bind to each other to form the heterodimeric complex or of which regions are important for DNA end binding. We have done genetic and biochemical studies to examine the domains within the two subunits important for protein assembly and for DNA end binding. We found that the C-terminal 20-kDa region of Ku70 and the C-terminal 32-kDa region of Ku86 are important for subunit-subunit interaction. For DNA binding, full-length individual subunits are inactive, indicating that heterodimer assembly precedes DNA binding. DNA end binding activity by the heterodimer requires the C-terminal 40-kDa region of Ku70 and the C-terminal 45-kDa region of Ku86. Leucine zipper-like motifs in both subunits that have been suggested as the Ku70-Ku86 interaction domains do not appear to be the sites of such interaction because these are dispensable for both assembly and DNA end binding. On the basis of these studies, we have organized Ku70 into nine sequence regions conserved between Saccharomyces cerevisiae, Drosophila melanogaster, mice, and humans; only the C-terminal three regions are essential for assembly (amino acids [aa] 439 to 609), and the C-terminal four regions appear to be essential for DNA end binding (aa 254 to 609). Within the minimal active fragment of Ku86 necessary for subunit interaction (aa 449 to 732) and DNA binding (aa 334 to 732), a proline-rich region is the only defined motif.  相似文献   

8.
Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.  相似文献   

9.
In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.  相似文献   

10.
Replicative DNA polymerases duplicate genomes in a very efficient and accurate mode. However their progression can be blocked by DNA lesions since they are unable to accommodate bulky damaged bases in their active site. In response to replication blockage, monoubiquitination of PCNA promotes the switch between replicative and specialized polymerases proficient to overcome the obstacle. In this study, we characterize novel connections between proteins involved in replication and TransLesion Synthesis (TLS). We demonstrate that PDIP38 (Polδ interacting protein of 38 kDa) directly interacts with the TLS polymerase Polη. Interestingly, the region of Polη interacting with PDIP38 is found to be located within the ubiquitin-binding zinc finger domain (UBZ) of Polη. We show that the depletion of PDIP38 increases the number of cells with Polη foci in the absence of DNA damage and diminishes cell survival after UV irradiation. In addition, PDIP38 is able to interact directly not only with Polη but also with the specialized polymerases Rev1 and Polζ (via Rev7). We thus suggest that PDIP38 serves as a mediator protein helping TLS Pols to transiently replace replicative polymerases at damaged sites.  相似文献   

11.
D'Souza S  Waters LS  Walker GC 《DNA Repair》2008,7(9):1455-1470
The genes encoding Rev1 and DNA polymerase zeta (Rev3/Rev7) are together required for the vast majority of DNA damage-induced mutations in eukaryotes from yeast to humans. Here, we provide insight into the critical role that the Saccharomyces cerevisiae Rev1 C-terminus plays in the process of mutagenic DNA damage tolerance. The Rev1 C-terminus was previously thought to be poorly conserved and therefore not likely to be important for mediating protein-protein interactions. However, through comprehensive alignments of the Rev1 C-terminus, we have identified novel and hitherto unrecognized conserved motifs that we show play an essential role in REV1-dependent survival and mutagenesis in S. cerevisiae, likely in its post-replicative gap-filling mode. We further show that the minimal C-terminal fragment of Rev1 containing these highly conserved motifs is sufficient to interact with Rev7.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Rev, mediates the nuclear export of unspliced and singly spliced viral mRNAs by bridging viral RNA and export receptor human CRM1 (hCRM1). Ribonucleoprotein complex formation, including the oligomerization of Rev proteins on viral RNA, must occur to allow export. We show here that Rev-Rev interactions, which are a basis of complex formation, can be initiated without cellular factors and are subsequently enhanced by hCRM1-Ran-GTP. Furthermore, we reveal functions for the Rev carboxy-terminal (C-terminal) region, which is well conserved among many HIV-1 strains, and for which no function has been reported. This region is required for the efficient binding of Rev to hCRM1 and consequently for nuclear export, Rev-Rev dimerization, and full Rev transactivator activity. Consistent with these results, a HIV-1 proviral plasmid that expresses a C-terminally truncated Rev mutant protein produces smaller amounts of the p24 antigen than does a plasmid that possesses an intact rev gene. These results indicate the functional importance of the C-terminal region for full Rev activity, which leads to efficient HIV-1 replication.  相似文献   

13.
14.
DNA damage tolerance consisting of template switching and translesion synthesis is a major cellular mechanism in response to unrepaired DNA lesions during replication. The Rev1 pathway constitutes the major mechanism of translesion synthesis and base damage-induced mutagenesis in model cell systems. Rev1 is a dCMP transferase, but additionally plays non-catalytic functions in translesion synthesis. Using the yeast model system, we attempted to gain further insights into the non-catalytic functions of Rev1. Rev1 stably interacts with Rad5 (a central component of the template switching pathway) via the C-terminal region of Rev1 and the N-terminal region of Rad5. Supporting functional significance of this interaction, both the Rev1 pathway and Rad5 are required for translesion synthesis and mutagenesis of 1,N6-ethenoadenine. Furthermore, disrupting the Rev1–Rad5 interaction by mutating Rev1 did not affect its dCMP transferase, but led to inactivation of the Rev1 non-catalytic function in translesion synthesis of UV-induced DNA damage. Deletion analysis revealed that the C-terminal 21-amino acid sequence of Rev1 is uniquely required for its interaction with Rad5 and is essential for its non-catalytic function. Deletion analysis additionally implicated a C-terminal region of Rev1 in its negative regulation. These results show that a non-catalytic function of Rev1 in translesion synthesis and mutagenesis is mediated by its interaction with Rad5.  相似文献   

15.
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.  相似文献   

16.
The genomes of eukaryotic cells predict the existence of multiple DNA polymerases, which are proposed to serve specialized roles in DNA replication and repair. We report here the isolation of the full-length human DNA POLQ gene, and an initial characterization of its gene product, DNA polymerase θ. POLQ is of particular interest as it is orthologous to Drosophila Mus308, a gene implicated in cellular resistance to interstrand DNA cross-linking agents. The POLQ cDNA encodes a polypeptide of 2592 amino acids with an ATPase-helicase domain in the N-terminal part of the protein, a central spacer domain, and a DNA polymerase domain in the C-terminal portion. This arrangement is conserved with Mus308. Expression of an mRNA of ~8.5 kb was detected in human cell lines. In a survey of human and mouse tissues, expression was highest in testis. Immunoblotting with POLQ antibodies detected a protein of >250 kDa in extracts from HeLa cells. Prominent fragments of ~100 kDa suggest that POLQ is readily proteolyzed. Full-length human POLQ was expressed from a baculovirus system. Purified POLQ showed DNA polymerase activity on nicked double-stranded DNA and on a singly primed DNA template. The enzyme activity was resistant to aphidicolin, consistent with its membership of the A family of DNA polymerases, and inhibited by dideoxynucleotides. POLQ further exhibited a single-stranded DNA-dependent ATPase activity.  相似文献   

17.
Entamoeba histolytica encodes four family B2 DNA polymerases that vary in amino acid length from 813 to 1279. These DNA polymerases contain a N-terminal domain with no homology to other proteins and a C-terminal domain with high amino acid identity to archetypical family B2 DNA polymerases. A phylogenetic analysis indicates that these family B2 DNA polymerases are grouped with DNA polymerases from transposable elements dubbed Polintons or Mavericks. In this work, we report the cloning and biochemical characterization of the smallest family B2 DNA polymerase from E. histolytica. To facilitate its characterization we subcloned its 660 amino acids C-terminal region that comprises the complete exonuclease and DNA polymerization domains, dubbed throughout this work as EhDNApolB2. We found that EhDNApolB2 displays remarkable strand displacement, processivity and efficiently bypasses the DNA lesions: 8-oxo guanosine and abasic site.Family B2 DNA polymerases from T. vaginalis, G. lambia and E. histolytica contain a Terminal Region Protein 2 (TPR2) motif twice the length of the TPR2 from φ29 DNA polymerase. Deletion studies demonstrate that as in φ29 DNA polymerase, the TPR2 motif of EhDNApolB2 is solely responsible of strand displacement and processivity. Interestingly the TPR2 of EhDNApolB2 is also responsible for efficient abasic site bypass. These data suggests that the 21 extra amino acids of the TPR2 motif may shape the active site of EhDNApolB2 to efficiently incorporate and extended opposite an abasic site. Herein we demonstrate that an open reading frame derived from Politons-Mavericks in parasitic protozoa encode a functional enzyme and our findings support the notion that the introduction of novel motifs in DNA polymerases can confer specialized properties to a conserved scaffold.  相似文献   

18.
The thumb subdomain, located in various family B DNA polymerases in the C-terminal region, has been shown in their crystal structures to move upon binding of DNA, changing its conformation to nearly completely wrap around the DNA. It has therefore been involved in DNA binding. In agreement with this, partial proteolysis studies of 29 DNA polymerase have shown that the accessibility of the cleavage sites located in their C-terminal region is reduced in the presence of DNA or terminal protein (TP), indicating that a conformational change occurs in this region upon substrate binding and suggesting that this region might be involved in DNA and TP binding. Therefore, we have studied the role of the C-terminus of 29 DNA polymerase by deletion of the last 13 residues of this enzyme. This fragment includes a previously defined region conserved in family B DNA polymerases. The resulting DNA polymerase Δ13 was strongly affected in DNA binding, resulting in a distributive replication activity. Additionally, the capacity of the truncated polymerase to interact with TP was strongly reduced and its initiation activity was very low. On the other hand, its nucleotide binding affinity and its fidelity were not affected. We propose that the C-terminal 13 amino acids of 29 DNA polymerase are involved in DNA binding and in a stable interaction with the initiator protein TP, playing an important role in the intrinsic processivity of this enzyme during polymerization.  相似文献   

19.
Kalifa L  Sia EA 《DNA Repair》2007,6(12):1732-1739
Ultraviolet light is a potent DNA damaging agent that induces bulky lesions in DNA which block the replicative polymerases. In order to ensure continued DNA replication and cell viability, specialized translesion polymerases bypass these lesions at the expense of introducing mutations in the nascent DNA strand. A recent study has shown that the N-terminal sequences of the nuclear translesion polymerases Rev1p and Pol zeta can direct GFP to the mitochondrial compartment of Saccharomyces cerevisiae. We have investigated the role of these polymerases in mitochondrial mutagenesis. Our analysis of mitochondrial DNA point mutations, microsatellite instability, and the spectra of mitochondrial mutations indicate that these translesion polymerases function in a less mutagenic pathway in the mitochondrial compartment than they do in the nucleus. Mitochondrial phenotypes resulting from the loss of Rev1p and Pol zeta suggest that although these polymerases are responsible for the majority of mitochondrial frameshift mutations, they do not greatly contribute to mitochondrial DNA point mutations. Analysis of spontaneous mitochondrial DNA point mutations suggests that Pol zeta may play a role in general mitochondrial DNA maintenance. In addition, we observe a 20-fold increase in UV-induced mitochondrial DNA point mutations in rev deficient strains. Our data provides evidence for an alternative damage tolerance pathway that is specific to the mitochondrial compartment.  相似文献   

20.
Translesion synthesis is a fundamental biological process that enables DNA replication across lesion sites to ensure timely duplication of genetic information at the cost of replication fidelity, and it is implicated in development of cancer drug resistance after chemotherapy. The eukaryotic Y-family polymerase Rev1 is an essential scaffolding protein in translesion synthesis. Its C-terminal domain (CTD), which interacts with translesion polymerase ζ through the Rev7 subunit and with polymerases κ, ι, and η in vertebrates through the Rev1-interacting region (RIR), is absolutely required for function. We report the first solution structures of the mouse Rev1 CTD and its complex with the Pol κ RIR, revealing an atypical four-helix bundle. Using yeast two-hybrid assays, we have identified a Rev7-binding surface centered at the α2-α3 loop and N-terminal half of α3 of the Rev1 CTD. Binding of the mouse Pol κ RIR to the Rev1 CTD induces folding of the disordered RIR peptide into a three-turn α-helix, with the helix stabilized by an N-terminal cap. RIR binding also induces folding of a disordered N-terminal loop of the Rev1 CTD into a β-hairpin that projects over the shallow α1-α2 surface and creates a deep hydrophobic cavity to interact with the essential FF residues juxtaposed on the same side of the RIR helix. Our combined structural and biochemical studies reveal two distinct surfaces of the Rev1 CTD that separately mediate the assembly of extension and insertion translesion polymerase complexes and provide a molecular framework for developing novel cancer therapeutics to inhibit translesion synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号