首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Xu Z  Rafi S  Ramakrishna W 《Génome》2011,54(8):629-638
Retrotransposons are ubiquitous in higher plant genomes. The presence or absence of retrotransposons in whole genome and high throughput genomic sequence (HTGS) from cultivated and wild rice was investigated to understand the organization and evolution of retrotransposon insertions in promoter regions. Approximately half of the Oryza sativa subsp. japonica 'Nipponbare' promoters with retrotransposons conserved in Oryza sativa subsp. indica '93-11' and four wild rice species showed higher sequence conservation in retrotransposon than nonretrotransposon regions. We further investigated, in detail, the evolutionary dynamics of five retrotransposons in the promoter regions of 95 rice genotypes. Our data suggest that four of five insertions (Rp2-Rp5) occurred in the ancestor of AA genome, while the other insertion (Rp1) predates the ancestral divergence of Oryza officinalis (CC genome). Four retrotransposons (Rp2-Rp5) were present in 52% (Rp2), 29% (Rp3), 53% (Rp4), and 43% (Rp5) of the rice genotypes with AA genome type, and the fifth retrotransposon (Rp1) was present in 95% of the rice genotypes with AA, BBCC, or CC genome types. Furthermore, most of these retrotransposons were found to evolve slower than flanking promoter regions, suggesting a role in promoter function for regulating downstream genes.  相似文献   

2.
Retrotransposon families in rice   总被引:24,自引:0,他引:24  
  相似文献   

3.
Krom N  Recla J  Ramakrishna W 《Genetica》2008,134(3):297-310
Retrotransposons comprise a significant fraction of the rice genome. Despite their prevalence, the effects of retrotransposon insertions are not well understood, especially with regard to how they affect the expression of genes. In this study, we identified one-sixth of rice genes as being associated with retrotransposons, with insertions either in the gene itself or within its putative promoter region. Among genes with insertions in the promoter region, the likelihood of the gene being expressed was shown to be directly proportional to the distance of the retrotransposon from the translation start site. In addition, retrotransposon insertions in the transcribed region of the gene were found to be positively correlated with the presence of alternative splicing forms. Furthermore, preferential association of retrotransposon insertions with genes in several functional classes was identified. Some of the retrotransposons that are part of full-length cDNA (fl-cDNA) contribute splice sites and give rise to novel exons. Several interesting trends concerning the effects of retrotransposon insertions on gene expression were identified. Taken together, our data suggests that retrotransposon association with genes have a role in gene regulation. The data presented in this study provides a foundation for experimental studies to determine the role of retrotransposons in gene regulation.  相似文献   

4.
Zhu Q  Ge S 《The New phytologist》2005,167(1):249-265
The A-genome group in Oryza consists of eight diploid species and is distributed world-wide. Here we reconstructed the phylogeny among the A-genome species based on sequences of nuclear genes and MITE (miniature inverted-repeat transposable elements) insertions. Thirty-seven accessions representing two cultivated and six wild species from the A-genome group were sampled. Introns of four nuclear single-copy genes on different chromosomes were sequenced and analysed by both maximum parsimony (MP) and Bayesian inference methods. All the species except for Oryza rufipogon and Oryza nivara formed a monophyletic group and the Australian endemic Oryza meridionalis was the earliest divergent lineage. Two subspecies of Oryza sativa (ssp. indica and ssp. japonica) formed two separate monophyletic groups, suggestive of their polyphyletic origin. Based on molecular clock approach, we estimated that the divergence of the A-genome group occurred c. 2.0 million years ago (mya) while the two subspecies (indica and japonica) separated c. 0.4 mya. Intron sequences of nuclear genes provide sufficient resolution and are informative for phylogenetic inference at lower taxonomic levels.  相似文献   

5.
Analysis of plant diversity with retrotransposon-based molecular markers   总被引:2,自引:0,他引:2  
Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants.  相似文献   

6.
LTR-retrotransposons contribute substantially to the structural diversity of plant genomes. Recent models of genome evolution suggest that retrotransposon amplification is offset by removal of retrotransposon sequences, leading to a turnover of retrotransposon populations. While bursts of amplification have been documented, it is not known whether removal of retrotransposon sequences occurs continuously, or is triggered by specific stimuli over short evolutionary periods. In this work, we have characterized the evolutionary dynamics of four populations of copia-type retrotransposons in allotetraploid tobacco (Nicotiana tabacum) and its two diploid progenitors Nicotiana sylvestris and Nicotiana tomentosiformis. We have used SSAP (Sequence-Specific Amplification Polymorphism) to evaluate the contribution retrotransposons have made to the diversity of tobacco and its diploid progenitor species, to quantify the contribution each diploid progenitor has made to tobacco's retrotransposon populations, and to estimate losses or amplifications of retrotransposon sequences subsequent to tobacco's formation. Our results show that the tobacco genome derives from a turnover of retrotransposon sequences with removals concomitant with new insertions. We have detected unique behaviour specific to each retrotransposon population, with differences likely reflecting distinct evolutionary histories and activities of particular elements. Our results indicate that the retrotransposon content of a given plant species is strongly influenced by the host evolutionary history, with periods of rapid turnover of retrotransposon sequences stimulated by allopolyploidy.  相似文献   

7.
Gao D  Chen J  Chen M  Meyers BC  Jackson S 《PloS one》2012,7(2):e32010
LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50-80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass.  相似文献   

8.
用 PCR技术从产于我国的 3种野生稻和亚洲栽培稻的 2个亚种中特异地扩增和测序了 r DNA的第一转录间隔区。普通野生稻 (Oryza rufipogon)、药用野生稻 (O.officinalis)、疣粒野生稻 (O.granu-lata)和栽培稻的两个亚种 (O.sativa ssp.indica,O.sativa ssp.japonica)的 ITS1序列为 1 93bp、1 94bp、2 1 8bp、1 94bp和 1 94bp,它们的 G/ C含量为 69.3%~ 72 .7% ,序列中位点趋异率为 1 .5%~ 1 0 .6%。序列的相似性比较和简约性分支分析的结果表明 ,普通野生稻与栽培稻的两个亚种之间的亲缘关系最为密切 ;药用野生稻与普通野生稻和与栽培稻的两个亚种的相似性都为 82 % ,说明它与 AA基因组有一定的亲缘关系 ;疣粒野生稻与普通野生稻、药用野生稻和栽培稻两个亚种的亲缘关系相对较远 ,它在稻属中可能是一个系统地位较独特的类群。以 ITS1序列构建的 3种野生稻和 2个栽培稻亚种的系统发育关系与前人用同工酶、叶绿体 DNA、线粒体 DNA和核 DNA资料重建的稻属的系统发育关系基本一致  相似文献   

9.
he first internal transcribed spacer (ITS1) of nuclear ribosomal DNA of three wild rice species and two subspecies of cultivated rice, which are distributed in China, was amplified using PCR technique and sequenced with automated fluorescent sequencing. The sequences of ITS1 ranged from 193 bp to 218 bp in size and G/C content varied from 69.3%to 72.7%. In pairwise comparison among the five taxa, sequence site divergence ranged from 1.5 % to 10.6%. Phylogenetic analysis of ITS1 sequences using Wagner parsimony generated a single well-resolved tree, which revealed that Oryza rufipogon was much more closely related to cultivated rice species than to the other two wild species. Oryza granulata was less closely related to either cultivated rice species or the other two wild species, and might be a unique and isolated taxon in the genus Oryza. The phylogenetic relationships of the three wild rice species and two cultivated rice subspecies inferred from ITS1 sequences is highly concordant with those based on the molecular evidence from isozyme, chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) of the genus Oryza.  相似文献   

10.
Krom N  Ramakrishna W 《Genomics》2012,99(5):308-314
Small-scale changes in gene order and orientation are common in plant genomes, even across relatively short evolutionary distances. We investigated the association of retrotransposons in and near rice gene pairs with gene pair conservation, inversion, rearrangement, and deletion in sorghum, maize, and Brachypodium. Copia and Gypsy LTR-retrotransposon insertions were found to be primarily associated with reduced frequency of gene pair conservation and an increase in both gene pair rearrangement and gene deletions. SINEs are associated with gene pair rearrangement, while LINEs are associated with gene deletions. Despite being more frequently associated with retrotransposons than convergent and tandem pairs, divergent gene pairs showed the least effects from that association. In contrast, convergent pairs were least frequently associated with retrotransposons yet showed the greatest effects. Insertions between genes were associated with the greatest effects on gene pair arrangement, while insertions flanking gene pairs had significant effects only on divergent pairs.  相似文献   

11.
Plants frequently possess operon‐like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane‐related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent‐copalyl diphosphate or syn‐copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical‐modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane‐related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon‐like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.  相似文献   

12.
13.
The rice nucleotide-binding site–leucine-rich repeat (NBS-LRR)-encoding resistance (R) gene Pi9 confers broad-spectrum resistance to the fungal pathogen Magnaporthe oryzae. The Pi9 locus comprises many NBS-LRR-like genes and is an ancient locus that is highly conserved in cultivated and wild rice species. To understand the genetic variation and molecular evolutionary mechanism of the Pi9 alleles in different rice species, we studied five AA genome Oryza species including two cultivated rice species (Oryza sativa and Oryza glaberrima) and three wild rice species (Oryza nivara, Oryza rufipogon, and Oryza barthii). A 2.9-kb fragment spanning the NBS-LRR core region of the Pi9 gene was amplified and sequenced from 40 accessions. Sequence comparison revealed that the Pi9 alleles had an intermediate-diversified nucleotide polymorphism among the AA genome Oryza species. Sequence variations were more abundant in the LRR region than in the NBS region, indicating that the LRR region has played a more important role for the evolution of the Pi9 alleles. Furthermore, positive selection was found to be the main force promoting the divergence of the Pi9 alleles, especially in the LRR region. Our results reveal the characteristics and evolutionary dynamics of the Pi9 alleles among the two cultivated and three wild rice species.  相似文献   

14.
Indochina Peninsula is the primary centre of diversity of rice and lies partly in the centre of origin of cultivated rice (Oryza sativa) where the wild ancestor (Oryza rufipogon) is still abundant. The wild gene pool is potentially endangered by urbanisation and the expansion of agriculture, and by introgression hybridisation with locally cultivated rice varieties. To determine genetic diversity and structure of the wild rice of the region we genotyped nearly 1000 individuals using 20 microsatellite loci. We found ecological differentiation in 48 populations, distinguishable by their life‐history traits and the country of origin. Geographical divergence was suggested by isolation of the perennial Myanmar populations from those of Cambodia, Laos and Thailand. The annual types would be most likely to have lost genetic variation because of genetic drift and inbreeding. The growing of cultivated and wild rice together, however, gives ample opportunities for hybridisation, which already shows signs of genetic mixing, and will ultimately lead to replacement of the original wild rice gene pool. For conservation we suggest that wild rice should be conserved ex situ in order to prevent introgression from cultivated rice, along with in situ conservation in individual countries for the recurrent evolutionary process through local adaptation, but with sufficient isolation from cultivated rice fields to preserve genetic integrity of the wild populations.  相似文献   

15.
16.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.  相似文献   

17.
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (~3.5 Gb) and the well‐documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain‐containing Gypsy LTR retrotransposons (‘chromoviruses’), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.  相似文献   

18.
Long terminal repeat (LTR) retrotransposons constitute a significant portion of most eukaryote genomes and can dramatically change genome size and organization. Although LTR retrotransposon content variation is well documented, the dynamics of genomic flux caused by their activity are poorly understood on an evolutionary time scale. This is primarily because of the lack of an experimental system composed of closely related species whose divergence times are within the limits of the ability to detect ancestrally related retrotransposons. The genus Oryza, with 24 species, ten genome types, different ploidy levels and over threefold genome size variation, constitutes an ideal experimental system to explore genus-level transposon dynamics. Here we present data on the discovery and characterization of an LTR retrotransposon family named RWG in the genus Oryza. Comparative analysis of transposon content (approximately 20 to 27,000 copies) and transpositional history of this family across the genus revealed a broad spectrum of independent and lineage-specific changes that have implications for the evolution of genome size and organization. In particular, we provide evidence that the basal GG genome of Oryza (O. granulata) has expanded by nearly 25% by a burst of the RWG lineage Gran3 subsequent to speciation. Finally we describe the recent evolutionary origin of Dasheng, a large retrotransposon derivative of the RWG family, specifically found in the A, B and C genome lineages of Oryza.  相似文献   

19.
Red rice is an interfertiie, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the cropin the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America andthe weed has been proposed to have evolved through multiple mechanisms, including "de-domestication" of UScrop cultivars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedyOryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traitswith the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity haveindicated that many weed strains are closely related to Asian taxa (including indica and aus rice varieties, whichhave never been cultivated in the US, and the Asian crop progenitor O. rufipogon), whereas others show geneticsimilarity to the tropical japonica varieties cultivated in the southern US. Herein, we review what is known aboutthe evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to furthercharacterize the evolutionary genomics of this aggressive weed.  相似文献   

20.
中国野生稻遗传资源的保护及其在育种中的利用   总被引:15,自引:0,他引:15  
我国有三种野生稻,即普通野生稻(Oryza rufipogon)、药用野生稻(O.officinalis)和瘤粒野生稻(O.meyeriana)。这三种野生稻均被列为国家二级保护植物(渐危种)。调查结果表明,野生稻由于其自然群落大量丧失而濒危,濒危程度为普通野生稻>药用野生稻>瘤粒野生稻。造成濒危的主要原因是人为的破坏活动。人类的经济活动导致了野生稻生境丧失、生境质量不断恶化、栖息地越来越少;人类的活动也导致了外来种的入侵。目前,对野生稻的保护措施主要有就地保护(原地保护或原位保护)和迁地保护(易地保护或异位保护)。易地保护包括以种子保存的种质厍、以种茎保存的种质圃和以器官培养物作为材料的超低温保存。野生稻具有许多优良特性,如特强的耐寒性、高的抗病虫性、优质蛋白质含量高、功能叶片耐衰老的特异性、特强的再生性、良好的繁茂性及生长优势等等,这些优良特性已被广泛用于水稻常规育种和杂交育种中,并取得了巨大的社会效益和经济效益。有关野生稻生物技术方面的研究,如花药培养、原生质培养、体细胞杂交和基因工程等方面已取得了较大的进展。野生稻将在水稻育种中发挥越来越重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号