首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron's catalytic core. Previous studies suggested a model in which the protein binds first to the intron's P4-P6 domain, and then makes additional contacts with the P3-P9 domain to stabilize the two domains in the correct relative orientation to form the intron's active site. Here, we analyzed the interaction of CYT-18 with a small RNA (P4-P6 RNA) corresponding to the isolated P4-P6 domain of the N. crassa mitochondrial large subunit ribosomal RNA intron. RNA footprinting and modification-interference experiments showed that CYT-18 binds to this small RNA around the junction of the P4-P6 stacked helices on the side opposite the active-site cleft, as it does to the P4-P6 domain in the intact intron. The binding is inhibited by chemical modifications that disrupt base-pairing in P4, P6, and P6a, indicating that a partially folded structure of the P4-P6 domain is required. The temperature-dependence of binding indicates that the interaction is driven by a favorable enthalpy change, but is accompanied by an unfavorable entropy change. The latter may reflect entropically unfavorable conformational changes or decreased conformational flexibility in the complex. CYT-18 binding is inhibited at > or =125 mM KCl, indicating a strong dependence on phosphodiester-backbone interactions. On the other hand, Mg(2+) is absolutely required for CYT-18 binding, with titration experiments showing approximately 1.5 magnesium ions bound per complex. Metal ion-cleavage experiments identified a divalent cation-binding site near the boundary of P6 and J6/6a, and chemical modification showed that Mg(2+) binding induces RNA conformational changes in this region, as well as elsewhere, particularly in J4/5. Together, these findings suggest a model in which the binding of Mg(2+) near J6/6a and possibly at one additional location in the P4-P6 RNA induces formation of a specific phosphodiester-backbone geometry that is required for CYT-18 binding. The binding of CYT-18 may then establish the correct structure at the junction of the P4/P6 stacked helices for assembly of the P3-P9 domain. The interaction of CYT-18 with the P4-P6 domain appears similar to the TyrRS interaction with the D-/anticodon arm stacked helices of tRNA(Tyr).  相似文献   

2.
TheNeurospora crassamitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron RNA. Previous studies showed that CYT-18 binds with high affinity to the P4-P6 domain of the catalytic core and that there is some additional contribution to binding from the P3-P9 domain. Here, quantitative binding assays with deletion derivatives of theN. crassamitochondrial large rRNA intron showed that at least 70% of the binding energy can be accounted for by the interaction of CYT-18 with the P4-P6 domain. Within this domain, P4 and P6 are required for high affinity CYT-18 binding, while the distal elements P5 and P6a may contribute indirectly by stabilizing the correct structure of the binding site in P4 and P6. CYT-18 binds to a small RNA corresponding to the isolated P4-P6 domain, but not to a permuted version of this RNA in which P4-P6 is a continuous rather than a stacked helix. Iterativein vitroselection experiments with the isolated P4-P6 domain showed a requirement for base-pairing to maintain helices P4, P6 and P6a, but indicate that P5 is subject to fewer constraints. The most strongly conserved nucleotides in the selections were clustered around the junction of the P4-P6 stacked helix, with ten nucleotides (J3/4-2,3, P4 bp -1 and 3, and P6 bp -1 and 2) found invariant in the context of the wild-type RNA structure.In vitromutagenesis confirmed that replacement of the wild-type nucleotides at J3/4-2 and 3 or P4 bp-3 markedly decreased CYT-18 binding, reflecting either base specific contacts or indirect readout of RNA structure by the protein. Our results suggest that a major function of CYT-18 is to promote assembly of the P4-P6 domain by stabilizing the correct geometry at the junction of the P4-P6 stacked helix. The relatively large number of conserved nucleotides at the binding site suggests that the interaction of CYT-18 with group I introns is unlikely to have arisen by chance and could reflect either an evolutionary relationship between group I introns and tRNAs or interaction with a common stacked-helical structural motif that evolved separately in these RNAs.  相似文献   

3.
TheNeurospora crassamitochondrial tyrosyl-tRNA synthetase, the CYT-18 protein, functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron RNA. The group I intron catalytic core is thought to consist of two extended helical domains, one formed by coaxial stacking of P5, P4, P6, and P6a (P4-P6 domain) and the other consisting of P8, P3, P7, and P9 (P3-P9 domain). To investigate how CYT-18 stabilizes the active RNA structure, we used anEscherichia coligenetic assay based on the phage T4tdintron to systematically test the ability of CYT-18 to compensate for structural defects in three key regions of the catalytic core: J3/4 and J6/7, connecting regions that form parts of the triple-helical-scaffold structure with the P4-P6 domain, and P7, a long- range base-pairing interaction that forms the guanosine-binding site and is part of the P3-P9 domain. Our results show that CYT-18 can suppress numerous mutations that disrupt the J3/4 and J6/7 nucleotide-triple interactions, as well as mutations that disrupt base-pairing in P7. CYT-18 suppressed mutations of phylogenetically conserved nucleotide residues at all positions tested, except for the universally conserved G-residue at the guanosine-binding site. Structure mapping experiments with selected mutant introns showed that the CYT-18-suppressible J3/4 mutations primarily impaired folding of the P4-P6 domain, while the J6/7 mutations impaired folding of both the P4-P6 and P3-P9 domains to various degrees. The P7 mutations impaired the formation of both P7 and P3, thereby grossly disrupting the P3-P9 domain. The finding that the P7 mutations also impaired formation of P3 provides evidence that the formation of these two long-range pairings is interdependent in thetdintron. Considered together with previous work, the nature of mutations suppressed by CYT-18 supports a model in which CYT-18 helps assemble the P4-P6 domain and then stabilizes the two major helical domains of the catalytic core in the correct relative orientation to form the intron's active site.  相似文献   

4.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by stabilizing the catalytically active RNA structure. To accomplish this, CYT-18 recognizes conserved structural features of group I intron RNAs using regions of the N-terminal nucleotide-binding fold, intermediate alpha-helical, and C-terminal RNA-binding domains that also function in binding tRNA(Tyr). Curiously, whereas the splicing of the N. crassa mitochondrial large subunit rRNA intron is completely dependent on CYT-18's C-terminal RNA-binding domain, all other group I introns tested thus far are spliced efficiently by a truncated protein lacking this domain. To investigate the function of the C-terminal domain, we used an Escherichia coli genetic assay to isolate mutants of the Saccharomyces cerevisiae mitochondrial large subunit rRNA and phage T4 td introns that can be spliced in vivo by the wild-type CYT-18 protein, but not by the C-terminally truncated protein. Mutations that result in dependence on CYT-18's C-terminal domain include those disrupting two long-range GNRA tetraloop/receptor interactions: L2-P8, which helps position the P1 helix containing the 5'-splice site, and L9-P5, which helps establish the correct relative orientation of the P4-P6 and P3-P9 domains of the group I intron catalytic core. Our results indicate that different structural mutations in group I intron RNAs can result in dependence on different regions of CYT-18 for RNA splicing.  相似文献   

5.
Folding mechanism of the Tetrahymena ribozyme P4-P6 domain   总被引:2,自引:0,他引:2  
Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4-P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (approximately 2 s(-1)) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl(2). Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4-P6 domain fold at least 25 times more rapidly (k >/= 50 s(-1)) in isolation, than when part of the wild-type P4-P6 RNA. This difference implies that long-range interactions in the P4-P6 domain can interfere with folding of P5abc. P4-P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 A over the range of 0-100 mM NaCl. We propose that at low ionic strength, the addition of Mg(2+) causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.  相似文献   

6.
Young BT  Silverman SK 《Biochemistry》2002,41(41):12271-12276
Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once folded, have not been reported. Here we investigate the role of the key GAAA tetraloop-receptor motif in folding of the P4-P6 domain of the Tetrahymena group I intron RNA. Insertions of one or more nucleotides into the tetraloop significantly disrupt the thermodynamics of tertiary folding; single-nucleotide insertions shift the folding free energy by 2-4 kcal/mol (DeltaDeltaG(o)'). The folding kinetics of several modified P4-P6 domains were determined by stopped-flow fluorescence spectroscopy, using an internally incorporated pyrene residue as the chromophore. In contrast to the thermodynamic results, the kinetics of Mg(2+)-induced folding were barely affected by the tetraloop modifications, with a DeltaDeltaG(++) of 0.2-0.4 kcal/mol and a Phi value (ratio of the kinetic and thermodynamic contributions) of <0.1. These data indicate an early transition state for folding of P4-P6 with respect to forming the tetraloop-receptor contact, consistent with previous results for modifications elsewhere in P4-P6. We conclude that the GAAA tetraloop-receptor motif contributes little to the stabilization of the transition state for Mg(2+)-induced P4-P6 folding. Rather, the tetraloop-receptor motif acts to clamp the RNA once folding has occurred. This is the first report to correlate the kinetic and thermodynamic contributions of an important RNA tertiary motif, the GNRA tetraloop-receptor. The results are related to possible models for the Mg(2+)-induced folding of the P4-P6 RNA, including a model invoking rapid nonspecific electrostatic collapse.  相似文献   

7.
We recently described site-specific pyrene labeling of RNA to monitor Mg(2+)-dependent equilibrium formation of tertiary structure. Here we extend these studies to follow the folding kinetics of the 160-nucleotide P4-P6 domain of the Tetrahymena group I intron RNA, using stopped-flow fluorescence with approximately 1 ms time resolution. Pyrene-labeled P4-P6 was prepared using a new phosphoramidite that allows high-yield automated synthesis of oligoribonucleotides with pyrene incorporated at a specific 2'-amino-2'-deoxyuridine residue. P4-P6 forms its higher-order tertiary structure rapidly, with k(obs) = 15-31 s(-1) (t(1/2) approximately 20-50 ms) at 35 degrees C and [Mg(2+)] approximately 10 mM in Tris-borate (TB) buffer. The folding rate increases strongly with temperature from 4 to 45 degrees C, demonstrating a large activation enthalpy DeltaH(double dagger) approximately 26 kcal/mol; the activation entropy DeltaS(double dagger) is large and positive. In low ionic strength 10 mM sodium cacodylate buffer at 35 degrees C, a slow (t(1/2) approximately 1 s) folding component is also observed. The folding kinetics are both ionic strength- and temperature-dependent; the slow phase vanishes upon increasing [Na(+)] in the cacodylate buffer, and the kinetics switch completely from fast at 30 degrees C to slow at 40 degrees C. Using synchrotron hydroxyl radical footprinting, we confirm that fluorescence monitors the same kinetic events as hydroxyl radical cleavage, and we show that the previously reported slow P4-P6 folding kinetics apply only to low ionic strength conditions. One model to explain the fast and slow folding kinetics postulates that some tertiary interactions are present even without Mg(2+) in the initial state. The fast kinetic phase reflects folding that is facilitated by these interactions, whereas the slow kinetics are observed when these interactions are disrupted at lower ionic strength and higher temperature.  相似文献   

8.
Tertiary folding of the 160-nt P4-P6 domain of the Tetrahymena group I intron RNA involves burying of substantial surface area, providing a model for the folding of other large RNA domains involved in catalysis. Stopped-flow fluorescence was used to monitor the Mg2+-induced tertiary folding of pyrene-labeled P4-P6. At 35 degrees C with [Mg2+] approximately 10 mM, P4-P6 folds on the tens of milliseconds timescale with k(obs) = 15-31 s(-1). From these values, an activation free energy deltaG(double dagger) of approximately 8-16 kcal/mol is calculated, where the large range for deltaG(double dagger) arises from uncertainty in the pre-exponential factor relating k(obs) and delta G(double dagger). The folding rates of six mutant P4-P6 RNAs were measured and found to be similar to that of the wild-type RNA, in spite of significant thermodynamic destabilization or stabilization. The ratios of the kinetic and thermodynamic free energy changes phi = delta deltaG(double dagger)/delta deltaG(o') are approximately 0, implying a folding transition state in which most of the native-state tertiary contacts are not yet formed (an early folding transition state). The k(obs) depends on the Mg2+ concentration, and the initial slope of k(obs) versus [Mg2+] suggests that only approximately 1 Mg2+ ion is bound in the rate-limiting folding step. This is consistent with an early folding transition state, because folded P4-P6 binds many Mg2+ ions. The observation of a substantial deltaG(double dagger) despite an early folding transition state suggests that a simple two-state folding diagram for Mg2+-induced P4-P6 folding is incomplete. Our kinetic data are some of the first to provide quantitative values for an activation barrier and location of a transition state for tertiary folding of an RNA domain.  相似文献   

9.
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested rugged energy landscapes. Recently, single molecule fluorescence resonance energy transfer (smFRET) studies have exposed heterogeneity in many RNAs, consistent with deeply furrowed rugged landscapes. We turned to an RNA of intermediate complexity, the P4-P6 domain from the Tetrahymena group I intron, to address basic questions in RNA folding. P4-P6 exhibited long-lived heterogeneity in smFRET experiments, but the inability to observe exchange in the behavior of individual molecules led us to probe whether there was a non-conformational origin to this heterogeneity. We determined that routine protocols in RNA preparation and purification, including UV shadowing and heat annealing, cause covalent modifications that alter folding behavior. By taking measures to avoid these treatments and by purifying away damaged P4-P6 molecules, we obtained a population of P4-P6 that gave near-uniform behavior in single molecule studies. Thus, the folding landscape of P4-P6 lacks multiple deep furrows that would trap different P4-P6 molecules in different conformations and contrasts with the molecular heterogeneity that has been seen in many smFRET studies of structured RNAs. The simplicity of P4-P6 allowed us to reliably determine the thermodynamic and kinetic effects of metal ions on folding and to now begin to build more detailed models for RNA folding behavior.  相似文献   

10.
The Neurospora CYT-18 protein, a tyrosyl-tRNA synthetase, which functions in splicing group I introns in mitochondria, promotes splicing of mutants of the distantly related bacteriophage T4 td intron. In an in vivo assay, wild-type CYT-18 protein expressed in E. coli suppressed mutations in the td intron's catalytic core. CYT-18-suppressible mutations were also suppressed by high Mg2+ or spermidine in vitro, suggesting they affect intron structure. Both the N- and C-terminal domains of CYT-18 are required for efficient splicing, but CYT-18 with a large C-terminal truncation retains some activity. Our results indicate that CYT-18 interacts with conserved structural features of group I introns, and they provide direct evidence that a protein promotes splicing by stabilizing the catalytically active structure of the intron RNA.  相似文献   

11.
In this paper we report newly selected artificial modules that enhance the kcat values comparable with or higher than those of the wild-type ribozyme with broad substrate specificity. The elements required for the catalysis of Group I intron ribozymes are concentrated in the P3-P7 domain of their core region, which consists of two conserved helical domains, P4-P6 and P3-P7. Previously, we reported the in vitro selection of artificial modules residing at the peripheral region of a mutant Group I ribozyme lacking P4-P6. We found that derivatives of the ribozyme containing the modules performed the reversal of the first step of the self-splicing reaction efficiently by using their affinity to the substrate RNA, although their kcat values and substrate specificity were uninfluenced and limited, respectively. The results show that it is possible to add a variety of new domains at the peripheral region that play a role comparable with that of the conserved P4-P6 domain.  相似文献   

12.
Divalent metal ions are essential for the folding and catalytic activities of many RNAs. A commonly employed biochemical technique to identify metal-binding sites in RNA is the rescue of Rp alpha-phosphorothioate (PS) interference by the addition of soft divalent metal ions. To access the ability of such experiments to accurately identify metal-ion coordinations within a complex RNA fold, we report metal-rescue results from the Tetrahymena group I intron P4-P6 domain, where the location and coordination of five divalent metal ions have been determined by X-ray crystallography [J.H. Cate et al., Nat Struct Biol, 1997, 4:553]. We used a native gel mobility-shift to assay for P4-P6 folding in the presence of various divalent metal ions, and found that even moderate concentrations of Mn2+ (> or =0.5 mM) can rescue PS interference at sites that do not coordinate metal ions within the P4-P6 crystal structure. To control for such effects, 2'-deoxynucleotide interference was used to titrate the Mn2+ concentration to a level that produces metal-ion-specific rescue (0.3 mM). This concentration of Mn2+ specifically rescued four of the six metal-dependent phosphorothioate effects within the RNA domain, including PS interference resulting from outer-sphere coordination to the metals. Both sites that were not specifically rescued make inner-sphere metal-ion coordinations. Cd2+ and Zn2+ afforded rescue at a smaller subset of the six metal-specific PS sites, though again phosphates making outer-sphere coordinations to metal ions were rescued preferentially. These data on P4-P6 domain folding reinforce the need for caution when interpreting metal-rescue experiments.  相似文献   

13.
Crystal structure of a group I intron splicing intermediate   总被引:9,自引:3,他引:6  
A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron's two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a mu-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing.  相似文献   

14.
Compensatory mutations have been constructed which demonstrate that P8 and P6, two of nine proposed base-pairing interactions characteristic of group I introns, exist within the folded structure of the Tetrahymena thermophila rRNA intervening sequence, and that these secondary structure elements are important for splicing in E. coli and self-splicing in vitro. Two-base mutations in the 5' and 3' segments of P8 are predicted to disrupt P8 and a strong splicing-defective phenotype is observed in each case. A compensatory four-base mutation in P8 is predicted to restore pairing, and results in the restoration of splicing activity to nearly wild type levels. Thus, we conclude that P8 exists and is essential for splicing. In contrast to the strong phenotypes generally exhibited by mutations which disrupt RNA secondary structure, a two-base mutation in L8, the loop between P8[5'] and P8[3'], results in only a slight decrease in splicing activity. We also tested P6, a pairing which is proposed to consist of only two base-pairs in this intron. A two-base mutation in P6[3'] reduces splicing activity to a greater extent than does a two-base mutation in P6[5']. Comparison of the activities of these mutants and a compensatory P6 four-base mutant support the existence of P6, and suggest that the P6 pairing may be particularly important in the exon ligation step of splicing.  相似文献   

15.
Uchida T  He Q  Ralston CY  Brenowitz M  Chance MR 《Biochemistry》2002,41(18):5799-5806
We have explored the linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of Tetrahymena thermophila ribozyme by examining the Mg2+-induced folding and the urea-induced denaturation of the folded state as a function of Na+ under equilibrium folding conditions using hydroxyl radical footprinting. These studies allowed a thermodynamic examination of eight discrete protection sites within P4-P6 that are involved in several tertiary structure contacts. Monovalent ions compete with Mg2+ ions in mediating P4-P6 folding. The urea denaturation isotherms demonstrated DeltaDeltaG values of >2 kcal x mol(-1) in experiments conducted in 10 versus 200 mM NaCl at a constant 10 mM MgCl2. However, the individual-site isotherms reported by footprinting revealed that larger than average changes in DeltaG values were localized to specific sites within the Mg2+-rich A-bulge. The competitive effects of monovalent ions were less when K+ rather than Na+ was the monovalent cation present. This result indicates the importance of the specific K+ binding sites that are associated with AA-platform structures to P4-P6 folding and stability. These site-specific footprinting data provide quantitative and site-specific measurements of the ion-linked stability for P4-P6 that are interpreted with respect to crystallographic data.  相似文献   

16.
A guanosine to cytosine transversion at position 2 of the fifth intron of the mitochondrial gene COB blocks the ligation step of splicing. This mutation prevents the formation of a base pair within the P1 helix of this group I intron--the RNA duplex formed between the 3' end of the upstream exon and the internal guide sequence. The mutation also reduces the rate of the first step of splicing (guanosine addition at the 5' splice junction) while stimulating hydrolysis at the 3' intron-exon boundary. Consequently, the ligation of exons is blocked because the 3' exon is removed prior to cleavage at the 5' splice junction. The lesion can be suppressed by second-site mutations that preserve the potential for base-pairing at this position. Because the P1 duplex and the P10 duplex (between the guide sequence and the 3' exon) overlap at the affected pairings represent alternative structures that do not, indeed cannot, form simultaneously.  相似文献   

17.
RNA molecules commonly consist of helical regions separated by internal loops, and in many cases these internal loops have been found to assume stable structures. We have examined the function and dynamics of an internal loop, J5/5a, that joins the two halves of the P4-P6 domain of the Tetrahymena self-splicing group I intron. P4-P6 RNAs with mutations in the J5/5a region showed nondenaturing gel electrophoretic mobilities and levels of Fe(II)-EDTA cleavage protection intermediate between those of wild-type RNA and a mutant incapable of folding into the native P4-P6 tertiary structure. Mutants with the least structured J5/5a loops behaved the most like wild-type P4-P6, and required smaller amounts of Mg2+ to rescue folding. The activity of reconstituted introns containing mutant P4-P6 RNAs correlated similarly with the nature of the J5/5a mutation. Our results suggest that, in solution, the P4-P6 RNA is in a two-state equilibrium between folded and unfolded states. We conclude that this internal loop mainly acts as a flexible hinge, allowing the coaxially stacked helical regions on either side of it to interact via specific tertiary contacts. To a lesser extent, the specific bases within the loop contribute to folding. Furthermore, it is crucial that the junction remain unstructured in the unfolded state. These conclusions cannot be derived from a simple examination of the P4-P6 crystal structure (Cate JH et al., 1996, Science 273:1678-1685), showing once again that structure determination must be supplemented with mutational and thermodynamic analysis to provide a complete picture of a folded macromolecule.  相似文献   

18.
The self-splicing intron ribozymes have been regarded as primitive forms of the splicing machinery for eukaryotic pre-mRNAs. The splicing activity of group I self-splicing introns is dependent on an absolutely conserved and exceptionally densely packed core region composed of two helical domains, P3-P7 and P4-P6, that are connected rigidly via base triples. Here we show that a mutant group I intron ribozyme lacking both the P4-P6 domain and the base triples can perform the phosphoester transfer reactions required for splicing at both the 5' and 3' splice sites, demonstrating that the elements required for splicing are concentrated in the stacked helical P3-P7 domain. This finding establishes that the conserved core of the intron consists of two physically and functionally separable components, and we present a model showing the architecture of a prototype of this class of intron and the course of its molecular evolution.  相似文献   

19.
Previous studies suggested that domains 5 and 6 (D5 and D6) of group II introns act together in splicing and that the two helical structures probably do not interact by helix stacking. Here, we characterized the major Mg2+ ion- and salt-dependent, long-wave UV light-induced, intramolecular crosslinks formed in 4-thiouridine-containing D56 RNA from intron 5gamma (aI5gamma) of the COXI gene of yeast mtDNA. Four major crosslinks were mapped and found to result from covalent bonds between nucleotides separating D5 from D6 [called J(56)] and residues of D6 near and including the branch nucleotide. These findings are extended by results of similar experiments using 4-thioU containing D56 RNAs from a mutant allele of aI5gamma and from the group IIA intron, aI1. Trans-splicing experiments show that the crosslinked wild-type aI5gamma D56 RNAs are active for both splicing reactions, including some first-step branching. An RNA containing the 3-nt J(56) sequence and D6 of aI5gamma yields one main crosslink that is identical to the most minor of the crosslinks obtained with D56 RNA, but in this case in a cation-independent fashion. We conclude that the interaction between J(56) and D6 is influenced by charge repulsion between the D5 and D6 helix backbones and that high concentrations of cations allow the helices to approach closely under self-splicing conditions. The interaction between J(56) and D6 appears to be a significant factor establishing a side-by-side (i.e., not stacked) orientation of the helices of the two domains.  相似文献   

20.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号