首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a model to analyze a quantitative trait under frequency-dependent disruptive selection. Selection on the trait is a combination of stabilizing selection and intraspecific competition, where competition is maximal between individuals with equal phenotypes. In addition, there is a density-dependent component induced by population regulation. The trait is determined additively by a number of biallelic loci, which can have different effects on the trait value. In contrast to most previous models, we assume that the allelic effects at the loci can evolve due to epistatic interactions with the genetic background. Using a modifier approach, we derive analytical results under the assumption of weak selection and constant population size, and we investigate the full model by numerical simulations. We find that frequency-dependent disruptive selection favors the evolution of a highly asymmetric genetic architecture, where most of the genetic variation is concentrated on a small number of loci. We show that the evolution of genetic architecture can be understood in terms of the ecological niches created by competition. The phenotypic distribution of a population with an adapted genetic architecture closely matches this niche structure. Thus, evolution of the genetic architecture seems to be a plausible way for populations to adapt to regimes of frequency-dependent disruptive selection. As such, it should be seen as a potential evolutionary pathway to discrete polymorphisms and as a potential alternative to other evolutionary responses, such as the evolution of sexual dimorphism or assortative mating.  相似文献   

2.
We revisit the classical population genetics model of a population evolving under multiplicative selection, mutation, and drift. The number of beneficial alleles in a multilocus system can be considered a trait under exponential selection. Equations of motion are derived for the cumulants of the trait distribution in the diffusion limit and under the assumption of linkage equilibrium. Because of the additive nature of cumulants, this reduces to the problem of determining equations of motion for the expected allele distribution cumulants at each locus. The cumulant equations form an infinite dimensional linear system and in an authored appendix Adam Prügel-Bennett provides a closed form expression for these equations. We derive approximate solutions which are shown to describe the dynamics well for a broad range of parameters. In particular, we introduce two approximate analytical solutions: (1) Perturbation theory is used to solve the dynamics for weak selection and arbitrary mutation rate. The resulting expansion for the system's eigenvalues reduces to the known diffusion theory results for the limiting cases with either mutation or selection absent. (2) For low mutation rates we observe a separation of time-scales between the slowest mode and the rest which allows us to develop an approximate analytical solution for the dominant slow mode. The solution is consistent with the perturbation theory result and provides a good approximation for much stronger selection intensities.  相似文献   

3.
We analytically investigate the long-term evolution of a continuously varying quantitative character in a diploid population that is determined additively by a finite number of loci. The trait is under a mixture of frequency-dependent disruptive selection induced by intraspecific competition and frequency-independent stabilizing selection. Moreover, the trait is restricted to a finite range by constraints on the particular loci. Our investigations are based on explicit analytical results (provided by Bürger [2005. A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait. J. Math. Biol. 50, 355-396]; Schneider [2006. A multilocus-multiallele analysis of frequency-dependent selection induced by intraspecific competition. J. Math. Biol. 52, 483-523]) on the short-term dynamics under the assumption of linkage equilibrium. We show that the population always reaches a long-term equilibrium (LTE), i.e., an equilibrium that is resistant against perturbations of mutations of sufficiently small effect. In general, several LTEs can coexist. They can be calculated explicitly, and we provide necessary and sufficient conditions for their existence. In the case that more than one LTE exists, we exemplify numerically that the evolutionary outcome depends crucially on the initial genetic architecture, on the joint distribution of mutational effects across loci, and on the particular realization of the mutation process. Therefore, long-term evolution cannot be predicted from the ecology alone. We further show that a partial order exists for the LTEs. The set of LTEs has a 'largest' element, an LTE which is reached during long-term evolution if the effects of the occurring mutant alleles are sufficiently large.  相似文献   

4.
Abstract It has been shown theoretically that sympatric speciation can occur if intraspecific competition is strong enough to induce disruptive selection. However, the plausibility of the involved processes is under debate, and many questions on the conditions for speciation remain unresolved. For instance, is strong disruptive selection sufficient for speciation? Which roles do genetic architecture and initial composition of the population play? How strong must assortative mating be before a population can split in two? These are some of the issues we address here. We investigate a diploid multilocus model of a quantitative trait that is under frequency‐dependent selection caused by a balance of intraspecific competition and frequency‐independent stabilizing selection. This trait also acts as mating character for assortment. It has been established previously that speciation can occur only if competition is strong enough to induce disruptive selection. We find that speciation becomes more difficult for very strong competition, because then extremely strong assortment is required. Thus, speciation is most likely for intermediate strengths of competition, where it requires strong, but not extremely strong, assortment. For this range of parameters, however, it is not obvious how assortment can evolve from low to high levels, because with moderately strong assortment less genetic variation is maintained than under weak or strong assortment sometimes none at all. In addition to the strength of frequency‐dependent competition and assortative mating, the roles of the number of loci, the distribution of allelic effects, the initial conditions, costs to being choosy, the strength of stabilizing selection, and the particular choice of the fitness function are explored. A multitude of possible evolutionary outcomes is observed, including loss of all genetic variation, splitting in two to five species, as well as very short and extremely long stable limit cycles. On the methodological side, we propose quantitative measures for deciding whether a given distribution reflects two (or more) reproductively isolated clusters.  相似文献   

5.
We study the evolution of higher levels of dominance as a response to negative frequency-dependent selection. In contrast to previous studies, we focus on the effect of assortative mating on the evolution of dominance under frequency-dependent intraspecific competition. We analyze a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under a mixture of frequency-independent stabilizing selection, density-dependent selection, and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The second (modifier) locus determines the degree of dominance at the trait level. Additionally, the population mates assortatively with respect to similarities in the ecological trait. Our analysis shows that the parameter region in which dominance can be established decreases if small levels of assortment are introduced. In addition, the degree of dominance that can be established also decreases. In contrast, if assortment is intermediate, sexual selection for extreme types can be established, which leads to evolution of higher levels of dominance than under random mating. For modifiers with large effects, intermediate levels of assortative mating are most favorable for the evolution of dominance. For large modifiers, the speed of fixation can even be higher for intermediate levels of assortative mating than for random mating.  相似文献   

6.
A diffusion model is constructed for the joint distribution of absolute locus effect sizes and allele frequencies for loci contributing to an additive quantitative trait under selection in a haploid, panmictic population. The model is designed to approximate a discrete model exactly in the limit as both population size and the number of loci affecting the trait tend to infinity. For the case when all loci have the same absolute effect size, formal multiple-timescale asymptotics are used to predict the long-time response of the population trait mean to selection. For the case where loci can take on either of two distinct effect sizes, not necessarily with equal probability, numerical solutions of the system indicate that response to selection of a quantitative trait is insensitive to the variability of the distribution of effect sizes when mutation is negligible.  相似文献   

7.
Disruptive selection, emerging from frequency-dependent intraspecific competition can have very exciting evolutionary outcomes. One such outcome is the origin of new species through an evolutionary branching event. Literature on theoretical models investigating the emergence of disruptive selection is vast, with some investigating the sensitivity of the models on assumptions of the competition and carrying capacity functions’ shapes. What is seldom modeled is what happens once the population escapes its effect via increase phenotypic or genotypic variance. The expectation is mixed: disruptive selection could diminish and ultimately disappear or it could still exist leading to further speciation events through multiple evolutionary branching events. Here, we derive the conditions under which disruptive selection drives two subpopulations that originated at a branching point to other points in trait space where each subpopulation again experiences disruptive selection. We show that the general pattern for further branchings require that the competition function to be even narrower than what is required for the first evolutionary branching. However, we also show that the existence of disruptive selection in higher dimensional systems is also sensitive to the shapes of the functions used.  相似文献   

8.
Rice DP  Townsend JP 《Genetics》2012,190(4):1533-1545
Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.  相似文献   

9.
I use multilocus genetics to describe assortative mating in a competition model. The intensity of competition between individuals is influenced by a quantitative character whose value is determined additively by alleles from many loci. With assortative mating based on this character, frequency- and density-dependent competition can subdivide a population with an initially unimodal character distribution. The character distribution becomes bimodal, and the subpopulations corresponding to the two modes are reproductively separated because mating is assortative. This happens if the resource distribution is unimodal, i.e. even if selection due to phenotypic carrying capacities is not disruptive. The results suggest that sympatric speciation due to frequency-dependent selection can occur in quite general ecological scenarios if mating is assortative. I also discuss the evolution of assortative mating. Since it induces bimodal phenotype distributions, assortative mating leads to a better match of the resources if their distribution is also bimodal. Moreover, in a population with a bimodal phenotype distribution, the average strength of frequency-dependent competition is lower than in a unimodal population. Therefore, assortative mating permits higher equilibrium densities than random mating even if the resource distribution is unimodal. Thus, even though it may lead to a less efficient resource use, assortative mating is favoured over random mating because it reduces frequency-dependent effects of competition.  相似文献   

10.
A haploid model of frequency-dependent selection and assortative mating is introduced and analyzed for the case of a single multiallelic autosomal locus. Frequency-dependent selection is due to intraspecific competition mediated by a quantitative character under stabilizing or directional selection. Assortment is induced by the same trait. We analyze the equilibrium structure and the local stability properties of all possible equilibria. In the limit of weak selection we obtain global stability properties by finding a Lyapunov function. We provide necessary and sufficient conditions for the maintenance of polymorphism in terms of the strength of stabilizing selection, intraspecific competition and assortment. Our results also include criteria for the ability of extreme types to invade the population. Furthermore, we study the occurrence of disruptive selection and provide necessary and sufficient conditions for intraspecific divergence to occur.  相似文献   

11.
A population in which there is stabilizing selection acting on quantitative traits toward an intermediate optimum becomes monomorphic in the absence of mutation. Further, genotypes that show least environmental variation are also favored, such that selection is likely to reduce both genetic and environmental components of phenotypic variance. In contrast, intraspecific competition for resources is more severe between phenotypically similar individuals, such that those deviating from prevailing phenotypes have a selective advantage. It has been shown previously that polymorphism and phenotypic variance can be maintained if competition between individuals is "effectively" stronger than stabilizing selection. Environmental variance is generally observed in quantitative traits, so mechanisms to explain its maintenance are sought, but the impact of competition on its magnitude has not previously been studied. Here we assume that a quantitative trait is subject to selection for an optimal value and to selection due to competition. Further, we assume that both the mean and variance of the phenotypic value depend on genotype, such that both may be affected by selection. Theoretical analysis and numerical simulations reveal that environmental variance can be maintained only when the genetic variance (in mean phenotypic value) is constrained to a very low level. Environmental variance will be replaced entirely by genotypic variance if a range of genotypes that vary widely in mean phenotype are present or become so by mutation. The distribution of mean phenotypic values is discrete when competition is strong relative to stabilizing selection; but more genotypes segregate and the distribution can approach continuity as competition becomes extremely strong. If the magnitude of the environmental variance is not under genetic control, there is a complementary relationship between the levels of environmental and genetic variance such that the level of phenotypic variance is little affected.  相似文献   

12.
Studies of sexual selection show that both female choice and male-male competition can influence the evolution and expression of male phenotypes. In this regard, it is important to determine the functional basis through which male traits influence variation in male reproductive success. In this study, we estimate the strength and type of sexual selection acting on adult males in a population of wild lemur, Verreaux's sifaka (Propithecus verreauxi verreauxi). The data used in this study were collected at Beza Mahafaly Special Reserve, southwest Madagascar. We conducted paternity analyses on 70 males in order to estimate the distribution of reproductive success in this population. Paternity data were combined with morphometric data in order to determine which morphological traits covary with male fitness. Five morphological traits were defined in this analysis: body size, canine size, torso shape, arm shape, and leg shape. We utilized phenotypic selection models in order to determine the strength and type of selection acting directly on each trait. Our results show that directional selection acts on leg shape (a trait that is functionally related to locomotor performance), stabilizing selection acts on body mass and torso shape, and negative correlational selection acts on body mass and leg shape. We draw from biomechanical and kinematic studies of sifaka locomotion to provide a functional context for how these traits influence male mating competition within an arboreal environment. Verreaux's sifaka and many other gregarious lemurs are sexually monomorphic in body mass and canine size, despite a high frequency and intensity of male-male aggressive competition. Our results provide some insight into this paradox: in our population, there is no directional selection acting on body mass or canine size in males. The total pattern of selection implicates that behaviors relating to locomotor performance are more important than behaviors relating to fighting ability during intrasexual contests.  相似文献   

13.
We investigate a genetic model of a large population of sexual organisms in a changing environment. The organisms are subject to stabilising selection on a quantitative trait, with environmental change causing the fitness optimum to move. When the fitness optimum moves slowly, adaptation to the changing environment occurs by means of reasonably well-separated substitutions at the loci controlling the trait. In this way, the trait generally tracks the moving optimum, but in such a case, the population may exhibit periods of time where the mean trait value overshoots the moving optimal trait value, thereby exhibiting an apparent anticipation of selection. The mechanism underlying this phenomenon is determined from consideration of a simpler model that correctly captures the observed dynamical behaviour. We note that very slow rates of changes of traits are seen in the fossil record and the present work may be relevant to this topic.  相似文献   

14.
I describe the basic ingredients of a population structure analysis and the rationale for using polygenic quantitative traits in such analyses. The complexity of inheritance and the population dynamics of quantitative traits, however, imply that inferences regarding population structure based on such traits must be evaluated with appropriate cautions. Although many studies of quantitative traits in relation to population structure analysis underscore the importance of gene flow between subpopulations, I show that the role of selection in the evolution of a quantitative trait and its relationship to the inferred population structure cannot be overlooked. Finally, I review some recent advances in human quantitative genetic methodologies that can be used profitably in population structure analysis.  相似文献   

15.
Darwinian evolution consists of the gradual transformation of heritable traits due to natural selection and the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple quantitative traits under selection, mutation, and limited dispersal. We track the dynamics of trait means and of variance–covariances between traits that experience frequency‐dependent selection. Assuming a multivariate‐normal trait distribution, we recover classical dynamics of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different traits within‐individuals depends on the fitness effects of such associations between‐individuals. We find that these kin selection effects can be as relevant as pleiotropy for the evolution of correlation between traits. We illustrate this with an example of the coevolution of two social traits whose association within‐individuals is costly but synergistically beneficial between‐individuals. As dispersal becomes limited and relatedness increases, associations between‐traits between‐individuals become increasingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia to unimodal with a positive correlation under limited dispersal.  相似文献   

16.
A genetic model is investigated in which two recombining loci determine the genotypic value of a quantitative trait additively. Two opposing evolutionary forces are assumed to act: stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the underlying genetics, in particular recombination rate and relative magnitude of allelic effects, interact with the conflicting selective forces and derive the resulting, surprisingly complex equilibrium patterns. We also investigate the conditions under which disruptive selection on the phenotypes can be observed and examine how much genetic variation can be maintained in such a model. We discovered a number of unexpected phenomena. For instance, we found that with little recombination the degree of stably maintained polymorphism and the equilibrium genetic variance can decrease as the strength of competition increases relative to the strength of stabilizing selection. In addition, we found that mean fitness at the stable equilibria is usually much lower than the maximum possible mean fitness and often even lower than the fitness at other, unstable equilibria. Thus, the evolutionary dynamics in this system are almost always nonadaptive.  相似文献   

17.
The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population’s response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.  相似文献   

18.
Sexual selection must affect the genome for it to have an evolutionary impact, yet signatures of selection remain elusive. Here we use an individual‐based model to investigate the utility of genome‐wide selection components analysis, which compares allele frequencies of individuals at different life history stages within a single population to detect selection without requiring a priori knowledge of traits under selection. We modeled a diploid, sexually reproducing population and introduced strong mate choice on a quantitative trait to simulate sexual selection. Genome‐wide allele frequencies in adults and offspring were compared using weighted FST values. The average number of outlier peaks (i.e., those with significantly large FST values) with a quantitative trait locus in close proximity (“real” peaks) represented correct diagnoses of loci under selection, whereas peaks above the FST significance threshold without a quantitative trait locus reflected spurious peaks. We found that, even with moderate sample sizes, signatures of strong sexual selection were detectable, but larger sample sizes improved detection rates. The model was better able to detect selection with more neutral markers, and when quantitative trait loci and neutral markers were distributed across multiple chromosomes. Although environmental variation decreased detection rates, the identification of real peaks nevertheless remained feasible. We also found that detection rates can be improved by sampling multiple populations experiencing similar selection regimes. In short, genome‐wide selection components analysis is a challenging but feasible approach for the identification of regions of the genome under selection.  相似文献   

19.
We investigate a model that describes the evolution of a diploid sexual population in a changing environment. Individuals have discrete generations and are subject to selection on the phenotypic value of a quantitative trait, which is controlled by a finite number of bialleic loci. Environmental change is taken to lead to a uniformly changing optimal phenotypic value. The population continually adapts to the changing environment, by allelic substitution, at the loci controlling the trait. We investigate the detailed interrelation between the process of allelic substitution and the adaptation and variation of the population, via infinite population calculations and finite population simulations. We find a simple relation between the substitution rate and the rate of change of the optimal phenotypic value.  相似文献   

20.
We investigate how the intensity of competition for resources affects the strength of disruptive selection on a resource acquisition trait. This is done by analyzing several consumer–resource models in which consumers use a linear array of resources. We show that disruptive selection can be diminished under both strong and weak competition, making disruptive selection a unimodal function of the strength of competition. Weak selection under strong competition arises when competition causes the extinction (for self-reproducing resources) or depletion (for abiotic resources) of the most rapidly caught resources. Weak selection under weak competition is a consequence of minimal effects of consumers on resources. The precise relationship between intensity of competition and strength of disruptive selection is sensitive to the shape of the consumer's resource utilization curve and the nature of resource growth. The most strongly unimodal competition–selection relationships result from utilization curves with long tails. Our results show that a simple comparison of the width of the resource abundance distribution and the consumer's utilization function is not sufficient to determine whether selection is disruptive. The results may explain some contradictory experimental findings regarding the effect of consumer mortality on the strength of disruptive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号