首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified 16 different mutations of the low-density lipoprotein receptor (LDLR) gene in 25 unrelated Korean patients with heterozygous familial hypercholesterolemia (FH), including five novel mutations, C83Y, 661del17, 1705insCTAG, C675X, and 941-1G>A. The 1705insCTAG mutation in which the four 3 cent -terminal nucleotides of exon 11 are duplicated was found to prevent splicing of exon 11 and would therefore generate a truncated polypeptide. The in-frame 36-bp deletion (1591del36) in exon 11, which had been reported only in one Korean FH patient, was also found. We showed that this change affects transport of the LDL receptor from the endoplasmic reticulum to the cell surface. In addition, we found 8 mutations (-136C>T, E119K, E207K, E207X, F382L, R574Q, 1846-1G>A, and P664L) that had been described in other ethnic groups but not in Koreans, and 2 mutations (R94H and D200N) that had been described in Koreans as well as other ethnic groups. 5 mutations (1591del36, E119K, E207X, E207K, and P664L) were found more than once in the Korean FH samples. Identification of the novel and recurring LDLR mutations in Korean FH patients should facilitate prenatal and early diagnosis in families at high risk of FH.  相似文献   

2.
Maple syrup urine disease (MSUD) is an autosomal recessive disease caused by a deficiency in subunits of the branched-chain α-keto-acid dehydrogenase complex (BCKDH). To characterize the mutations present in five patients with MSUD (four classic and one intermediate), three-step analyses were established: (1) identification of the involved subunit by complementation analysis using three different cell lines derived from homozygotes having E1α, E2β or the E2 mutant gene; (2), screening for a mutation site in cDNA of the corresponding subunit by RT-PCR-SSCP and (3), mutant analysis by sequencing the amplified cDNA fragment. Four single-base missense mutations, R115W, Q1556K, A209T and I282T, were detected in the E1α subunit. A single-base missense mutation H156R and three frame-shift mutations to generate stop codons downstream, including an 11-bp deletion of the tandem repeat in exon 1, a single-base (T) deletion and a single-base (G) insertion, were identified in the E1β subunit gene. All except one (11-bp deletion in E1β (Nobukini, Y., Mitsubuchi, H., Akaboshi, I., Indo, Y., Endo, F., Yoshioka, A. and Matsuda, I. (1991) J. Clin. Invest. 87, 1862–1866)) were novel mutations. The sites of amino-acid substitution were all conserved in other species. Thus, mutations causing MSUD are heterogeneous.  相似文献   

3.
Two overlapping cDNA clones (1,991 bp and 736 bp, respectively) encoding the precursor of human mitochondrial very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) were cloned and sequenced. The cDNA inserts of these clones together encompass a region of 2,177 bases, encoding the entire protein of 655 amino acids, including a 40-amino acid leader peptide and a 615-amino acid mature polypeptide. PCR-amplified VLCAD cDNAs were sequenced in cultured fibroblasts from two VLCAD-deficient patients. In both patients, a 105-bp deletion encompassing bases 1078-1182 in VLCAD cDNA was identified. The deletion seems to occur due to exon skipping during processing of VLCAD pre-mRNA. This is the first demonstration of a mutation causing VLCAD deficiency. Quantitative cDNA expression of normal human VLCAD was performed in the patients' fibroblasts, using vaccinia viral system, which demonstrated that the deficiency of the normal VLCAD protein causes impaired long-chain fatty acid beta-oxidation activity in the patients' fibroblasts. In patient fibroblasts, raising VLCAD activity to approximately 20% of normal control fibroblast activity raised palmitic acid beta-oxidation flux to the level found in control fibroblasts, which may offer important information for the rational design of future somatic gene therapy for VLCAD deficiency.  相似文献   

4.
5.
6.
Canavan disease is inherited as an autosomal recessive trait that is caused by the deficiency of aspartoacylase (ASPA). The majority of patients with Canavan disease are from an Ashkenazi Jewish background. Mutations in ASPA that lead to loss of enzymatic activity have been identified, and E285A and Y231X are the two predominant mutations that account for 97% of the mutant chromosomes in Ashkenazi Jewish patients. The current study was aimed at finding the molecular basis of Canavan disease in 25 independent patients of non-Jewish background. Eight novel and three previously characterized mutations accounted for 80% (40/50) of mutant chromosomes. The A305E missense mutation accounted for 48% (24/50) of mutant chromosomes in patients of western European descent, while the two predominant Jewish mutations each accounted for a single mutant chromosome. The eight novel mutations identified included 1- and 4-bp deletions (32 deltaT and 876 deltaAGAA, respectively) and I16T, G27R, D114E, G123E, C152Y, and R168C missense mutations. The homozygous 32 deltaT deletion was identified in the only known patient of African-American origin with Canavan disease. The heterozygosity for 876 deltaAGAA mutation was identified in three independent patients from England. Six single-base changes leading to missense mutations were identified in patients from Turkey (D114E, R168C), The Netherlands (I16T), Germany (G27R), Ireland (C152Y), and Canada (G123E). A PCR-based protocol is described that was used to introduce mutations in wild-type cDNA. In vitro expression of mutant cDNA clones demonstrated that all of these mutations led to a deficiency of ASPA and should therefore result in Canavan disease.  相似文献   

7.
Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.  相似文献   

8.
Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.  相似文献   

9.
BACKGROUND: Fabry disease (OMIM 301500) is an X-linked inborn error of glycosphingolipid metabolism resulting from mutations in the alpha-galactosidase A (alpha-Gal A) gene. The disease is phenotypically heterogeneous with classic and variant phenotypes. To assess the molecular heterogeneity, define genotype/phenotype correlations, and for precise carrier identification, the nature of the molecular lesions in the alpha-Gal A gene was determined in 40 unrelated families with Fabry disease. MATERIALS AND METHODS: Genomic DNA was isolated from affected males or obligate carrier females and the entire alpha-Gal A coding region and flanking sequences were amplified by PCR and analyzed by automated sequencing. Haplotype analyses were performed with polymorphisms within and flanking the alpha-Gal A gene. RESULTS: Twenty new mutations were identified (G43R, R49G, M72I, G138E, W236X, L243F, W245X, S247C, D266E, W287C, S297C, N355K, E358G, P409S, g1237del15, g10274insG, g10679insG, g10702delA, g11018insA, g11185-delT), each in a single family. In the remaining 20 Fabry families, 18 previously reported mutations were detected (R49P, D92N, C94Y, R112C [two families], F113S, W162X, G183D, R220X, R227X, R227Q, Q250X, R301X, R301Q, G328R, R342Q, E358K, P409A, g10208delAA [two families]). Haplotype analyses indicated that the families with the R112C or g10208delAA mutations were not related. The proband with the D266E lesion had a severe classic phenotype, having developed renal failure at 15 years. In contrast, the patient with the S247C mutation had a variant phenotype, lacking the classic manifestations and having mild renal involvement at 64 years. CONCLUSIONS: These results further define the heterogeneity of alpha-Gal A mutations causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis in these families, and provide additional genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

10.
Nearly 300 different mutations underlying mucopolysaccharidosis type II (MPS II) have been identified worldwide. To investigate the molecular lesions underlying Taiwanese MPS II, probands and families were identified and screened for iduronate-2-sulfatase (IDS) mutation by single-strand conformation polymorphism and DNA sequencing. Five novel and five previously reported mutations were found. Together with those previously reported, a total of 17 identified missense, small deletion, and nonsense mutations were further characterized by transient expression studies. Transfection of COS-7 cells by the mutated cDNA did not yield active enzyme, demonstrating the deleterious nature of the mutations. A 57% decrease in IDS mRNA level was seen with the 231del6 mutation. Among the 11 missense mutations examined, K347E substitution showed apparent normal maturation and targeting on immunoblot and confocal fluorescence microscopy examination. The other 10 missense mutations showed apparent normal precursor with little or reduced mature forms, indicating normal maturation but incorrect targeting of the mutant enzymes. Among the six deletion and nonsense mutations examined, 1055del12 and E521X showed abnormal maturation. The staining pattern of the truncated W267X and 1184delG proteins suggested retention within early vacuolar compartments. The mutated 231del6 and 1421delAG proteins were unstable and largely degraded. Molecular analysis of the IDS gene will clearly identify the cause of the disease within patients and allow antenatal and family studies. The further characterization of gene mutations may delineate their functional consequences on IDS activity and processing and may enable future studies of genotype–phenotype correlation to estimate a prognosis and to lead to possible therapeutic interventions.Jui-Hung Chang and Shuan-Pei Lin contributed equally to this work  相似文献   

11.
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that causes renal failure. One of the genes that is responsible for this disease, PKD1, has been identified and characterized. Many mutations of the PKD1 gene have been identified in the Caucasian population. We investigated the occurrence of mutations in this gene in the Japanese population. We analyzed each exon in the 3' single copy region of the gene between exons 35 and 46 in genomic DNA obtained from 69 patients, using a PCR-based direct sequencing method. Four missense mutations (T3509M, G3559R, R3718Q, R3752W), one deletion mutation (11307del61bp) and one polymorphism (L3753L) were identified, and their presence confirmed by allele-specific oligonucleotide (ASO) hybridization. These were novel mutations, except for R3752W, and three of them were identified in more than two families. Mutation analysis of the PKD1 gene in the Japanese population is being reported for the first time.  相似文献   

12.
The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G > T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.  相似文献   

13.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

14.
Lec3 Chinese hamster ovary (CHO) cell glycosylation mutants have a defect in sialic acid biosynthesis that is shown here to be reflected most sensitively in reduced polysialic acid (PSA) on neural cell adhesion molecules. To identify the genetic origin of the phenotype, genes encoding different factors required for sialic acid biosynthesis were transfected into Lec3 cells. Only a Gne cDNA encoding UDP-GlcNAc 2-epimerase:ManNAc kinase rescued PSA synthesis. In an in vitro UDP-GlcNAc 2-epimerase assay, Lec3 cells had no detectable UDP-GlcNAc 2-epimerase activity, and Lec3 cells grown in serum-free medium were essentially devoid of sialic acid on glycoproteins. The Lec3 phenotype was rescued by exogenously added N-acetylmannosamine or mannosamine but not by the same concentrations of N-acetylglucosamine, glucosamine, glucose, or mannose. Sequencing of CHO Gne cDNAs identified a nonsense (E35stop) and a missense (G135E) mutation, respectively, in two independent Lec3 mutants. The G135E Lec3 mutant transfected with a rat Gne cDNA had restored in vitro UDP-GlcNAc 2-epimerase activity and cell surface PSA expression. Both Lec3 mutants were similarly rescued with a CHO Gne cDNA and with CHO Gne encoding the known kinase-deficient D413K mutation. However, cDNAs encoding the known epimerase-deficient mutation H132A or the new Lec3 G135E Gne mutation did not rescue the Lec3 phenotype. The G135E Gne missense mutation is a novel mechanism for inactivating UDP-GlcNAc 2-epimerase activity. Lec3 mutants with no UDP-GlcNAc 2-epimerase activity represent sensitive hosts for characterizing disease-causing mutations in the human GNE gene that give rise to sialuria, hereditary inclusion body myopathy, and Nonaka myopathy.  相似文献   

15.
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder caused by deficiency of the glycogen-debranching enzyme (AGL). Recent studies of the AGL gene have revealed the prevalent mutations in North African Jewish and Caucasian populations, but whether these common mutations are present in other ethnic groups remains unclear. We have investigated eight Japanese GSD IIIa patients from seven families and identified seven mutations, including one splicing mutation (IVS 14+1G-->T) previously reported by us, together with six novel ones: a nonsense mutation (L124X), a splice site mutation (IVS29-1G-->C), a 1-bp deletion (587delC), a 2-bp deletion (4216-4217delAG), a 1-bp insertion (2072-2073insA), and a 3-bp insertion (4735-4736insTAT). The last mutation results in insertion of a tyrosine residue at a putative glycogen-binding site, and the rest are predicted to cause synthesis of truncated proteins lacking the glycogen-binding site at the carboxyl terminal. Thirteen novel polymorphisms have also been revealed in this study: three amino acid substitutions (R387Q, G1115R, and E1343 K), one silent point mutation (L298L), one nucleotide change in the 5'-noncoding region, and eight nucleotide changes in introns. Haplotype analysis with combinations of these polymorphic markers showed L124X, IVS14+1G-->T, and 4216-4217delAG to be on different haplotypes. These results demonstrate the importance of the integrity of the carboxy terminal domain in the AGL protein and the molecular heterogeneity of GSD IIIa in Japan.  相似文献   

16.
17.
Reduced nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial respiratory chain and complex I deficiency accounts for approximately 30% cases of respiratory-chain deficiency in humans. Only seven mitochondrial DNA genes, but >35 nuclear genes encode complex I subunits. In an attempt to elucidate the molecular bases of complex I deficiency, we studied the six most-conserved complex I nuclear genes (NDUFV1, NDUFS8, NDUFS7, NDUFS1, NDUFA8, and NDUFB6) in a series of 36 patients with isolated complex I deficiency by denaturing high-performance liquid chromatography and by direct sequencing of the corresponding cDNA from cultured skin fibroblasts. In 3/36 patients, we identified, for the first time, five point mutations (del222, D252G, M707V, R241W, and R557X) and one large-scale deletion in the NDUFS1 gene. In addition, we found six novel NDUFV1 mutations (Y204C, C206G, E214K, IVS 8+41, A432P, and del nt 989-990) in three other patients. The six unrelated patients presented with hypotonia, ataxia, psychomotor retardation, or Leigh syndrome. These results suggest that screening for complex I nuclear gene mutations is of particular interest in patients with complex I deficiency, even when normal respiratory-chain-enzyme activities in cultured fibroblasts are observed.  相似文献   

18.
Gaucher disease (GD) is the most frequent lysosomal storage disease presenting in all populations. Mutations in the acid β-D-glucosidase gene (GBA) cause development of GD, resulting in a decrease or full loss of activity of this enzyme. We report here the results of the molecular-genetic analysis in 68 Russian GD patients from 65 families with the three types of this disease. The GD genotype has been completely elucidated in 58 patients and in all patients we have found at least one mutant allele (92.6%). Besides frequent mutations (p.N370S, c.1263_1317del (del55), p.L444P, p.R463C, Rec NciI) we have identified rare mutations p.R120W, p.R170C, p.R184W, p.G202R, Rec C (p.R120W; p.W184R; p.N188K; p.V191G; p.S196P; p.G202R; p.F213I), presenting in other populations of GD patients. The mutations p.P236T, p.L249Q, p.L288P, p.P319S, p.V352M, p.W381X, p.A384D identified in this study had not been described before. The GBA mutations identified in Russian patients have been compared with those found in patients of other European countries. Genotype-phenotype correlations in GD are discussed.  相似文献   

19.
20.
Pyruvate kinase (PK) is critical for the regulation of the glycolytic pathway. The regulatory properties of Escherichia coli were investigated by mutating six charged residues involved in interdomain salt bridges (Arg(271), Arg(292), Asp(297), and Lys(413)) and in the binding of the allosteric activator (Lys(382) and Arg(431)). Arg(271) and Lys(413) are located at the interface between A and C domains within one subunit. The R271L and K413Q mutant enzymes exhibit altered kinetic properties. In K413Q, there is partial enzyme activation, whereas R271L is characterized by a bias toward the T-state in the allosteric equilibrium. In the T-state, Arg(292) and Asp(297) form an intersubunit salt bridge. The mutants R292D and D297R are totally inactive. The crystal structure of R292D reveals that the mutant enzyme retains the T-state quaternary structure. However, the mutation induces a reorganization of the interface with the creation of a network of interactions similar to that observed in the crystal structures of R-state yeast and M1 PK proteins. Furthermore, in the R292D structure, two loops that are part of the active site are disordered. The K382Q and R431E mutations were designed to probe the binding site for fructose 1, 6-bisphosphate, the allosteric activator. R431E exhibits only slight changes in the regulatory properties. Conversely, K382Q displays a highly altered responsiveness to the activator, suggesting that Lys(382) is involved in both activator binding and allosteric transition mechanism. Taken together, these results support the notion that domain interfaces are critical for the allosteric transition. They couple changes in the tertiary and quaternary structures to alterations in the geometry of the fructose 1, 6-bisphosphate and substrate binding sites. These site-directed mutagenesis data are discussed in the light of the molecular basis for the hereditary nonspherocytic hemolytic anemia, which is caused by mutations in human erythrocyte PK gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号