首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A beta-ray gauge system was used to study evaporation rates and drying times of liquids exposed to relatively high fluxes of air ions of either polarity produced by a corona discharge. Evaporation rates from thin layers of water, ethyl alcohol, and carbon tetrachloride increased considerably when exposed to air ions, compared to untreated liquids under constant environmental conditions. Drying times of liquid layers exposed to air ions were shortened by a factor of at least two over liquids that had not been exposed to ions. The drying time of a liquid layer was found to increase with the decrease of ion fluxes at the liquid surface. Threshold values of 1.9×1011 positive ions and 2.7×1011 negative ions cm–2 s–1 were established below which no increase in the evaporation rates were observed for ethyl alcohol and carbon tetrachloride. The evaporation rate of water at these same ion fluxes was significantly higher than that of the control. The present experiments indicate that a stream of air ions could play a major role in the observed enhancement of evaporation rates.  相似文献   

2.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

3.
Summary Sheep and calf Purkinje fibers (false tendons) were cut near one end and exposed to a solution containing no calcium and the dye Procion Yellow (M4RS, molecular weight near 700). Fifteen minutes later the damaged end was sealed by applying calcium ions (Tyrode solution). Traces of Procion Yellow were detected within the intracellular compartment at a distance of 2.4 mm from the site of damage when the preparations had been washed in dye-free solution for 4 hr. This indicates that the dye had diffused through about 20 cells in succession. There was no detectable uptake of Procion Yellow through intact surface membranes. Visual curve fitting to quantitative data on concentrationvs. distance gives an apparent diffusion coefficient (cell junctions and myoplasm in series) of 3×10–8 cm2 sec–1, as against 1×10–6 cm2 sec–1 in an agar gel. It is concluded that specialized contact areas between neighboring cardiac cells represent a considerable yet not an absolute hindrance to the movement of this particle.  相似文献   

4.
This report describes for the first time the effects of long-term continuous exposures of animals to small air ions and D.C. electric fields. In this study we exposed 200 female NAMRU mice (25/cage) to the following conditions: ± high ions (2×105/cm3), ± low ions (2×103/cm3), ± field only and ground (ion depleted, no field). Specially designed cages provided a defined D.C. field of about 2 kV/meter in ionized environments, with somewhat lower values in the field only cages. Detailed mapping of ion flux originating from a tritium foil generating system (multiple sources in an overhead plate) indicated a well defined, but heterogenous pattern with eight peak areas. Using a 100 cm2 probe, ion flux values ranged from 10–12–10–14 A/cm2, with an average flux of 8.7±6.8×10–13 A/cm2 in high negative ion cages, with good reproducibility between cages.Measurements of serum glucose, cholesterol, and urea nitrogen (samples taken every three months) showed a number of small but consistent and statistically significant differences between animals maintained in different environments during the first year of exposure. Serum globulin and whole blood serotonin, however, did not show any significant environmental effects. Interestingly, pairwise comparisons between high negative and low negative ion conditions, or between high positive and low positive ion conditions, or between the two ground conditions, revealed no significant differences between cages. This argues for a similarity of environmental responses for the mice maintained in each of the compared conditions.The results of a multiple classification analysis for the entire first year showed a preponderence of effects for the ionized cages, although other conditions also had highly significant differences as compared to the grand mean value. While this study has shown effects of only small magnitude (compared to normal physiological variations) in the female NAMRU mice studied here, the significance of these results strongly validates the precept of long-term air ion effects in animals. Given the known variability of different species and strains, future studies will have to determine the actual range of responsiveness of animals exposed on a long-term basis to defined air ion and electromagnetic environments.Deceased December 8, 1982.  相似文献   

5.
The spatial distribution and temporal variation of intracellular Ca ion in differentiated Neuroblastoma-Glia Hybridoma 108–15 cells (NG108–15) were investigated using a fluorescence microscope imaging technique. Fura-2 was used as a probe. Electrical current pulses of 10–20 µA were applied to axons connecting to NG cells in order to elicit the influx of Ca ion. The concentration of intracellular Ca is usually 50–80 nM in NG cells in the resting state. Upon stimulation, the Ca level increases by a factor of 2–5. The entry of Ca++ across cell membranes is followed by intracellular diffusion and the propagation of a wave front is clearly seen in digital images. The diffusion constant was calculated to be approximately 1.66×10–6 cm2/sec. This value is about one-fifth of the free diffusion coefficient of Ca ion in aqueous solution (7.82 × 10–6 cm2/sec). Cd ion, at the concentration of 1–2 mM, blocks the influx of Ca as expected whereas the influx is unaffected by TTX at the concentration of 0.1 – 0.2µM.  相似文献   

6.
Early growth of barley seedlings supplied with ion-depleted air in a controlled microenvironment was used as the criterion of physiological action in experiments designed to separate electrical field and air ion effects. The essential element in this work was the fact that3H foils, functioning as bias electrodes at applied voltages of 67.5-955 V and providing field strengths of 4.6 V/cm to 90 V/cm will produce 2.7×104–1.7×105 small air ions/cm3 — concentrations sufficient to yield a statistically valid increase in growth rate. In contrast, seedlings exposed to equivalent electrical fields in ion-depleted air exhibited no increase in rate of growth. These results indicate that this particular physiological response is produced by small negative air ions and is not dependent on the accompanying electrical fields.  相似文献   

7.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

8.
The absence of harmful effects of protracted negative air ionisation was studied in 5 weather-sensitive women and 5 normal men chosen at random. Negative ions were generated by the Modulion of Amcor-Amron (Herzliya, Israel). The patients were exposed separately during 8 sleeping hours and 8 working hours to the apparatus at 1–2 m distance in a 4 × 4 m room, for 2 months. Thus they were exposed to a daily uptake of 1 × 104 negative ions/cm3 for 16 h/day during 2 months. Urinary 17-KS, 17-OH, adrenaline and noradrenaline excretion was not affected by the negative ionisation. However serotonin, 5-HIAA, histamine and thyroxine excretion — if increased before — diminished by 50% on an average. There were no changes in body weight, blood pressure, pulse, respiratory rate, oral morning temperature, dynamometer grip strength, routine liver function tests, urinary pH, albumen, glucose, ketones, bilirubin, or occult blood, red and white blood count and ECG records. The EEG revealed the typical changes due to negative air ionisation: stabilising of frequency, increased amplitudes, spreading of brainwaves from the perceptive occipital area to the conceptive frontal area and synchronisation of both hemisphere tracings.  相似文献   

9.
Growth factor receptors transmit biological signals for the stimulation of cell growth in vitro and in vivo and their autocrine stimulation may be involved in tumorigenesis. It is therefore, of great value to understand receptor reactions in response to ultraviolet (UV) light which certain normal human cells are invaribly exposed to during their growth cycle. UV irradiation has recently been shown to deplete antioxidant enzymes in human skin. The aims of the present study were a) to compare the lateral mobility of epidermal growth factor receptors (EGF-R) in cultured human keratinocytes and human foreskin fibroblasts, b) to investigate effects of ultraviolet B radiation on the mobility of EGF-R in these cells, and c) study the response of EGF-R on addition of antioxidant enzymes. The epidermal growth factor receptors were labeled with rhodaminated EGF, the lateral diffusion was determined and the fraction of mobile EGF-R assessed with the fluorescence recovery after photobleaching (FRAP). We found that human keratinocytes display a higher basal level of EGF-R mobility than human skin fibroblasts, viz. with diffusion coefficients (D ± standard error of the mean, SEM) of 4.2±0.2 × 10–10 cm2/s, and 1.8±0.2 × 10–10 cm2/s, respectively. UVB-irradiated fibroblasts showed an almost four-fold increase in the diffusion coefficient; D was 6.3±0.3 × 10–10 cm2/s. The keratinocytes, however, displayed no significant increase in receptor diffusion after irradiation; D was 5.1±0.8 × 10–10 cm2/s. In both cell types the percentage of EGF-R fluorescence recovery after photobleaching, i.e. the fraction of mobile receptors, was significantly increased after irradiation. In keratinocytes it increased from 69% before irradiation to 78% after irradiation. Analogous figures for fibroblasts were 61% and 73%. The effect of UVB on fibroblast receptors was abolished by prior addition of superoxide dismutase (SOD) and catalase (CAT). It is concluded that UVB radiation of fibroblasts and keratinocytes can affect their biophysical properties of EGF-R. The finding that addition of antioxidant enzymes prevented the UVB effect in fibroblasts may indicate the involvement of reactive oxygen metabolites.Abbreviations CAT Catalase - D Lateral diffusion coefficient - EDTA Ethylenediaminetetraacetic acid - EGF Epidermal growth factor - E-MEM Eagle's minimum essential medium - FCS Fetal calf serum - FRAP Fluorescence recovery after photobleaching - KRG Krebs-Ringer phosphate buffer - PBS Phosphate-buffered saline - R Mobile fraction - ROS Reactive oxygen species - SEM Standard error of the mean - SOD Superoxide dismutase - UVA Ultraviolet light-A (315-400 nm) - UVB Ultraviolet light-B (280-315 nm)  相似文献   

10.
Uptake and incorporation of L-leucine-C14 and L-cystine-S35 was studied in the mycelial [MP] and yeastlike [YP] phases of the dimorphic fungal pathogen,Blastomyces dermatitidis. Both amino acids entered the cells of the two morphological forms ofB. dermatitidis by a permease-like system at low external concentrations of substrate. At high substrate levels, the amino acids entered the cells by a simple diffusion-like process in addition to the permease-like system. Michaelis-Menten constants [Km] for L-leucine was found to be 1.1×10–5 M and 4.4×10–5 M for the MP and YP phases, respectively. The Km for L-cystine was found to be 1.0×10–5 M for the MP and 0.5×10–5 M for the YP. A requirement for energy supplied by metabolic activity was demonstrated by the inhibition of uptake and incorporation of the amino acids by cells incubated with either 2,4-dinitrophenol or sodium azide. Amino acid uptake was broadly tolerant of hydrogen ion concentration, but definite optima were demonstrated at pH 7.0 to 7.5.  相似文献   

11.
Using a mechanism of `self-generation', polymer surfaces were coated with ocular mucin-type glycoproteins that were extracted from tear fluid and immobilized through specific interaction with a lectin, jacalin. Separately, jacalin affinity chromatography of tear fluid showed the main retained components had molecular weights higher than 200 kDa. In evaluations of bacterial adhesion, a model surface with jacalin-immobilized ocular mucins took up a significantly smaller number of adhered Staphylococcus epidermidis (0.041×106 cells cm–2) than a bare surface of the same polymer (1.202×106 cells cm–2). The lectin-mediated ocular mucin coating reduced the bacteria uptake by about 95% showing that the presence of mucin on surfaces may afford a general protection against bacterial colonization.  相似文献   

12.
Air ions of both polarity, produced by corona electrodes, were used to evaporate to dryness liquid samples of ethyl alcohol (EA), water (W), and carbon tetrachloride (CTC). Drying times were determined with a beta-ray gauge. Ion exposed samples of EA, W, and CTC dried, respectively, 2.3, 3.2, and 5.4 times faster than the corresponding control samples when exposed simultaneously to 0.94×1012 positive and 1.83×1012 negative air ions cm–2s–1 under the same laboratory conditions. Drying by corona discharge could be explained by three different mechanisms. Electric wind caused by the ionic drag is proposed as the principal driving force for the observed enhancement of evaporation. The decrease in free energy of a dielectric in the presence of an electric field compared to its absence may have increased the escaping tendency of the molecules of the treated liquids. The turbulence in the liquids created by the rotational effect on the dielectric molecules by the electric field may also be a factor in further enhancing the mass transfer rates from the samples.  相似文献   

13.
Summary Biodegradation rates of 12 phenols were measured with respect to acclimated microbial biomass ranging from 2.3×104 to 2.3×108 cells/l. Rates ranged between 0.02 mg l–1 day–1 for 1.6 mg/lp-bromophenol exposed to 2.3×104 cells/l and 1.41 mg l–1 day–1 for 3.2 mg/lp-methylphenol exposed to 2.3×108 cells/l. Generally, rates for all phenols were first-order in substrate concentration and zero-order in biomass concentration. Bromophenol biodegradation was preceded by lag periods of varying lengths and to a small extent the rate was dependent on microbial biomass. Results from this study suggest chemical biodegradation generally exhibits pseudo-first-and occasionally, second-order kinetics.  相似文献   

14.
This report describes the design and construction of cage environments suitable for chronic exposures of large groups of mice to air ions and electric fields. These environments provide defined and reproducible ion densities, ion flux, DC electric fields, sound levels, air temperature and air quality. When used during a 2 year study, these cage environments served as a durable and reliable continuous exposure system. Three environmental chambers (cubicles) housed a total of 12 cages and provided control of air temperature, air purity and lighting. Exposure cages had grounded metal exterior walls, a plexiglass door and interior walls lined with formica. An internal isolated field plate supplemented with guard wires, energized with ca 1000 VDC, created about a 2 kV/m electric field at the grounded cage floor. Air ions resulted from the beta emission of sealed tritium foils mounted on the field plate. Cages provided high ion (1.3×105 ions/cc), low ion (1.6×103 ions/cc) and field only (ion depleted < 50 ions/cc) conditions for both polarities with similar electric fields in ionized and field only cages. Detailed mapping of the floor level ion flux using 100 cm2 flat probes gave average fluxes of 880 fA cm–2 in high ion cages and 10 fA cm–2 in low ion cages. Whole body currents measured using live anesthethized mice in high ion cages averaged 104±63 pA. Both ion flux and whole body currents remained constant over time, indicating no charge accumulation on body fur or cage wall surfaces in this exposure system.  相似文献   

15.
Insulin release, net fluxes of Ca2+, and glucose metabolism were studied in a clonal cell line (RINmSF) established from a transplantable rat islet tumor. The insulin content amounted to only 0.03% of that of the total protein and decreased even further with subsequent passages. The insulin secretion was as high as 10 to 20% of the total hormone content per hour. Insulin release was stimulated by K+ depolarization but not by exposure to glucose. In contrast to this secretory pattern, glucose but not K+ stimulated the net uptake of Ca2+ at micromolar concentrations of the ion. The glucose effect was not mimicked by 20 mM 3-O-methylglucose. It was as pronounced at 1 mM as at 20 mM of the sugar and corresponded to an uptake of 119 fmol cm–2 s–1. Glucose metabolism was typical for tumor cells with a high glycolytic flux and an oxidationtoutilization ratio as low as 0.05–0.15. Maximal oxidative degradation was attained already at l mM. This concentration was also equivalent to the Km for glucose utilization, indicating a substantial left-hand shift of the normal dose-response curve. It is suggested that glucose induces a depolarizationindependent net uptake of Ca2+ by favouring intracellular buffering of the cation.  相似文献   

16.
Geochemical investigations of interstitial waters from the Salton Sea, CA reveal evidence of concentrated brines in the sediments underlying the lakes two basins. The brines are likely caused by the gradual dissolution of evaporite deposits. The chemical composition of the brine in the northern basin is dominated by magnesium and sulfate and differs from the southern basin where the dominant components are sodium and chloride. Sediment depth distributions of major ions and porosity indicate diffusion of salts from the sediments into the overlying waters in both basins. Benthic fluxes have been calculated for the four most abundant ions: magnesium, sodium, sulfate and chloride. For the northern basin we calculate diffusive fluxes of 3.7 × 10–2, 8.2 × 10–2, 44 × 10–2, and 5.4 × 10–2 g cm–2 yr–1 for magnesium, sodium, sulfate and chloride, respectively. For the southern basin we calculate diffusive fluxes of 0.9 × 10–2, 9.7 × 10–2, 6.9 × 10–2, and 25 × 10–2 g cm–2 yr–1 for these same ions. By scaling up our results we estimate the salinity flux from the sediment to the water column to be between 3.6 × 104 and 3.6 × 105metric tons per year, equivalent to 1–10% of the riverine input. These results are important for developing strategies to combat rising salinity in the Salton Sea, CA.  相似文献   

17.
Summary The net total uptake of several amino acids at low (0.8–3.1 moles/liter) as well as high (800–1200 moles/liter) extracellular concentrations, by normal rat liver, a premalignant liver, a solid hepatoma, and the Zajdela ascitic hepatoma cells, has been compared under conditions in which protein synthesis continues. At low amino acid concentrations, the initial (3 min) total uptake of the various amino acids in the Zajdela cells, was 3–10 (average 7) times more, and the intracellular concentration of the labeled amino acids taken up 14–45 (average 31) times more, than in normal liver. At the high amino acid concentrations, the total uptake in the Zajdela cells, at 60–120 min was 2–5 (average 3.5) times more, and the intracellular concentration of the amino acids taken up 8–19 (average 13) times more, than in normal liver; the corresponding values for the premalignant liver and the solid hepatoma were in between those for normal liver and the Zajdela cells. Further, the rate of the total uptake of amino acids, their intracellular concentration, the proportion of the amino acid taken up utilized for protein synthesis, the rate of incorporation of the amino acid taken up into protein, and the cellular growth rate, seemed to be correlated in the four cell/tissue preparations studied. In most cases, the rate of the net uptake fell drastically with time, the uptake virtually stopping after 90–180 min, probably due to lack of serum in the incubation medium.  相似文献   

18.
An upward shift in the concentration of calcium present in the medium during somatic embryogenesis increased the number of embryos produced approximately two-fold. This was observed when embryogenic suspension cells grown in 2,4-D medium with the normal calcium concentration of 10–3 M were transferred to hormone-free medium containing 10–2 M calcium and when embryogenic suspension cells grown in 2,4-D medium containing 10–4 M calcium were transferred to hormone-free medium with 10–3 M calcium. At calcium concentrations between 6·10–3 and 10–2 M globular stage somatic embryos were found in cultures supplemented with 2·10–6 M of 2,4-D indicating that elevated calcium counteracts the inhibitory effect of 2,4-D on somatic embryogenesis. No qualitative changes were found in the pattern of extracellular polypeptides as a result of growth and embryogenesis in media with different calcium concentrations.  相似文献   

19.
Coupons of stainless steel type AISI-304 were exposed to the industrial cooling system of a petrochemical plant fed by seawater from the Guanabara Bay, Rio de Janeiro, Brazil, in order to study thein situ formation of biofilms. Bacteria, microalgae and fungi were detected on the coupons as soon as 48 h after exposure. Their respective numbers were determined at times 48, 96 and 192 h and over the following 8 weeks. Aerobic, anaerobic and sulfate-reducing bacteria were quantified according to the technique of the most probable number, and fungi by the pour plate technique. The number of microorganisms present in the forming biofilm varied over the experimental period, reaching maximal levels of 14×1011 cells cm–2, 30×1013 cells cm–2, 38×1011 cells cm–2 and 63×105 cells cm–2, respectively, for aerobic bacteria, anaerobic bacteria, sulfate-reducing bacteria and fungi, and the dynamics of this variation depended on the group of microorganisms.Bacillus sp,Escherichia coli, Serratia sp andPseudomonas putrefaciens were identified among the aerobic bacteria isolated. Additionally, microalgae and bacteria of the genusGallionella were also detected. Nonetheless, no evidence of corrosion was found on the stainless steel type AISI-304 coupons over the experimental period.  相似文献   

20.
This report describes the second year of long-term continuous exposures of female NAMRU mice to small air ions and D.C. electric fields in the following conditions: ± high ions ((2×105/cm3), ± low ions (2×103/cm3), ± field (2 kV/m) only and ground (ion depleted, no field). Using an isolated anesthesized mouse, whole body ion flux values averaged 1.04±0.63×10–10 A in high ion cages for different positions on the cage floor, with about a hundred-fold reduction for low ion cages.During the second year (sample periods 5–8) of exposure serum chemistry variability increased, due to increased pathology and decreased numbers of animals as our experimental population died off. The fifth sample period yielded results consistent with those seen earlier, but later sample periods had many fewer significant differences between cages than did those of the first year. Nevertheless, MCA statistics for serum glucose for the second year found a pattern remarkably similar to the first, with the low ion cages (LN and LP) having the lowest levels. MCA statistics for both years emphasized this possible window effect of low level ionized conditions. Also, a comparison between the combined values for ionized (HN, LN, HP and LP) and ion depleted cages (NF, PF, G1 and G2) showed a highly significant difference (p<10–6) for serum glucose for both years of exposure, with lower glucose values seen for animals in the ionized cages overall. Animals of all conditions also showed a highly significant decrease in serum glucose with age.Comparison of mice in ionized cages vs. the non-ionized cages also resulted in a significant difference (p<.013) for survival characteristics between groups, with ion exposed animals having a shorter lifespan. These statistics argue strongly for significant effects of long-term exposure of NAMRU mice to the ionized environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号