共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical properties of an engineered heme-copper center in myoglobin have been investigated by UV-visible spectroelectrochemistry. In the cyanide-bridged, spin-coupled heme-copper center in an engineered myoglobin, the presence of Zn(II) in the Cu(B) center raises the heme reduction potential from -85 to 49 mV vs NHE. However, in the cyanide-free, spin-decoupled derivative of the same protein, the presence of Zn(II) in the Cu(B) center exerts little influence on the heme reduction potentials (77 and 80 mV vs NHE, respectively, in the absence and in the presence of Zn(II)). Similar trends have also been observed when copper ion is present in the Cu(B) center, although on a smaller scale, due to reduction of Cu(II) to Cu(I) prior to heme reduction. These results show that the presence of a metal ion in the designed Cu(B) center has a significant effect on the redox potential of heme Fe only when the two metal centers are coupled through a bridging ligand between the two metal centers, indicating that spin coupling plays an important role in redox potential regulation. In addition, the presence of a single positively charged Cu(I) center in the Cu(B) center resulted in a much lower increase (16 mV) in heme reduction potential than that of two positively charged Zn(II) (118 mV). Therefore, the heme reduction potential must be lowered after the first electron transfer to reduce heme Fe(3+)-Cu(B)(2+) to Fe(3+)-Cu(B)(+). To raise the heme reduction potential to make the second electron transfer (i.e., reduction of Fe(3+)-Cu(B)(+) to Fe(2+)-Cu(B)(+)) to be favorable, most likely a proton or decoupling of the heme-copper center is needed in the heme-copper site. These findings provide a strong argument for a thermodynamic driving force basis for redox-regulated proton transfer in heme-copper oxidases. 相似文献
2.
3.
The effects of lowering pH from 7 to 5 on the absorption, circular dichroism (MCD) and EPR spectra were studied for Paracoccus halodenitrificans nitric oxide reductase (NOR). Intensities of the characteristic bands for the high spin heme b, that at 592 nm in the absorption spectrum and those at 591 (+) and 606 (-) in the MCD spectrum decreased considerably. Concomitant cryogenic EPR spectrum indicated a drastic increase in the signal intensity due to the high spin heme b at g approximately 6, of which less than 5% had been EPR detectable at pH 7. Cyanide (x40) bound to the high spin heme b center in the reduced NOR irrespective of pH, while a much larger amount of azide (x1000) was necessary to bind to the reduced NOR at an acidic pH, ca. 5. Based on these results the structure and function of the high spin heme b center as the active site of NOR was discussed. 相似文献
4.
Timóteo CG Pereira AS Martins CE Naik SG Duarte AG Moura JJ Tavares P Huynh BH Moura I 《Biochemistry》2011,50(20):4251-4262
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mo?ssbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mo?ssbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ~ 6 and g ~ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ~ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction. 相似文献
5.
The effects of chloride on the redox properties of an engineered binuclear heme-copper center in myoglobin (Cu(B)Mb) were studied by UV-vis spectroelectrochemistry and EPR spectroscopy. A low-spin heme Fe(III)-Cu(I) intermediate was observed during the redox titration of Cu(B)Mb only in the presence of both Cu(II) and chloride. Upon the first electron transfer to the Cu(B) center, one of the His ligands of Cu(B) center dissociates and coordinates to the heme iron, forming a six-coordinate low-spin ferric heme center and a reduced Cu(B) center. The second electron transfer reduces the ferric heme and causes the release of the coordinated His ligand. Thus, the fully reduced state of the heme-copper center contains a five-coordinate ferrous heme and a reduced Cu(B) center, ready for O(2) binding and reduction to water to occur. In the absence of a chloride ion, formation of the low-spin heme species was not observed. These redox reactions are completely reversible. These results indicate that binding of chloride to the Cu(B) center can induce redox-dependent structural changes, and the bound chloride and hydroxide in the heme-copper center may play different roles in the redox-linked enzymatic reactions of heme-copper oxidases, probably because of their different binding affinity to the copper center and the relatively high concentration of chloride under physiological conditions. 相似文献
6.
A theoretical study on nitric oxide reductase activity in a ba(3)-type heme-copper oxidase 总被引:1,自引:0,他引:1
The mechanism of nitric oxide reduction in a ba(3)-type heme-copper oxidase has been investigated using density functional theory (B3LYP). Four possible mechanisms have been studied and free energy surfaces for the whole catalytic cycle including proton and electron transfers have been constructed by comparison to experimental data. The first nitric oxide coordinates to heme a(3) and is partly reduced having some nitroxyl anion character ((3)NO(-)), and it is thus activated toward the attack by the second N-O. In this reaction step a cyclic hyponitrous acid anhydride intermediate with the two oxygens coordinating to Cu(B) is formed. The cyclic hyponitrous acid anhydride is quite stable in a local minimum with high barriers for both the backward and forward reactions and should thus be observable experimentally. To break the N-O bond and form nitrous oxide, the hyponitrous acid anhydride must be protonated, the latter appearing to be an endergonic process. The endergonicity of the proton transfer makes the barrier of breaking the N-O bond directly after the protonation too high. It is suggested that an electron should enter the catalytic cycle at this stage in order to break the N-O bond and form N(2)O at a feasible rate. The cleavage of the N-O bond is the rate limiting step in the reaction mechanism and it has a barrier of 17.3 kcal/mol, close to the experimental value of 19.5 kcal/mol. The overall exergonicity is fitted to experimental data and is 45.6 kcal/mol. 相似文献
7.
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover. 相似文献
8.
Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase 下载免费PDF全文
Microbial cytochromes c' contain a 5-coordinate His-ligated heme that forms stable adducts with nitric oxide (NO) and carbon monoxide (CO), but not with dioxygen. We report the 1.95 and 1.35 A resolution crystal structures of the CO- and NO-bound forms of the reduced protein from Alcaligenes xylosoxidans. NO disrupts the His-Fe bond and binds in a novel mode to the proximal face of the heme, giving a 5-coordinate species. In contrast, CO binds 6-coordinate on the distal side. A second CO molecule, not bound to the heme, is located in the proximal pocket. Since the unusual spectroscopic properties of cytochromes c' are shared by soluble guanylate cyclase (sGC), our findings have potential implications for the activation of sGC induced by the binding of NO or CO to the heme domain. 相似文献
9.
Koutný M 《Folia microbiologica》2000,45(3):197-203
The review briefly summarizes current knowledge of the bacterial nitric-oxide reductase (NOR). This membrane enzyme consists of two subunits, the smaller one contains haem C and the larger one two haems B and nonhaem iron. The protein sequence and structure of metal centres demonstrate the relationship of NOR to the family of terminal oxidases. The binuclear Fe-Fe reaction centre, consisting of antiferromagnetically coupled haem B and nonhaem iron, is analogous to Fe-Cu centre of terminal oxidases. The data on the structure and function of NOR and terminal oxidases suggest that all these enzymes are closely evolutionally related. The catalytic properties are determined most of all by the relatively high toxicity of nitric oxide as a substrate and the resulting strong need to maintain its concentration at nanomolar levels. A kinetic model of the action of the enzyme comprises substrate inhibition. NOR does not conserve the free energy of nitric oxide reduction because it does not work as a proton pump and, moreover, the protons coming into the reaction are taken from periplasm, i.e. they do not cross the membrane. 相似文献
10.
The mechanism of nitric oxide reduction in a ba3-type heme-copper oxidase has been investigated using density functional theory (B3LYP). Four possible mechanisms have been studied and free energy surfaces for the whole catalytic cycle including proton and electron transfers have been constructed by comparison to experimental data. The first nitric oxide coordinates to heme a3 and is partly reduced having some nitroxyl anion character (3NO−), and it is thus activated toward the attack by the second NO. In this reaction step a cyclic hyponitrous acid anhydride intermediate with the two oxygens coordinating to CuB is formed. The cyclic hyponitrous acid anhydride is quite stable in a local minimum with high barriers for both the backward and forward reactions and should thus be observable experimentally. To break the NO bond and form nitrous oxide, the hyponitrous acid anhydride must be protonated, the latter appearing to be an endergonic process. The endergonicity of the proton transfer makes the barrier of breaking the NO bond directly after the protonation too high. It is suggested that an electron should enter the catalytic cycle at this stage in order to break the NO bond and form N2O at a feasible rate. The cleavage of the NO bond is the rate limiting step in the reaction mechanism and it has a barrier of 17.3 kcal/mol, close to the experimental value of 19.5 kcal/mol. The overall exergonicity is fitted to experimental data and is 45.6 kcal/mol. 相似文献
11.
Joel E. Morgan Michael I. Verkhovsky Mårten Wikström 《Journal of bioenergetics and biomembranes》1994,26(6):599-608
A model of redox-linked proton translocation is presented for the terminal heme-copper oxidases. The new model, which is distinct both in principle and in detail from previously suggested mechanisms, is introduced in a historical perspective and outlined first as a set of general principles, and then as a more detailed chemical mechanism, adapted to what is known about the chemistry of dioxygen reduction in this family of enzymes. The model postulates a direct mechanistic role in proton-pumping of the oxygenous ligand on the iron in the binuclear heme-copper site through an electrostatic nonbonding interaction between this ligand and the doubly protonated imidazolium group of a conserved histidine residue nearby. In the model this histidine residue cycles between imidazolium and imidazolate states translocating two protons per event, the imidazolate state stabilized by bonding to the copper in the site. The model also suggests a key role in proton translocation for those protons that are taken up in reduction of O2 to water, in that their uptake to the oxygenous ligand unlatches the electrostatically stabilized imidazolium residue and promotes proton release. 相似文献
12.
Shiro Y 《Biochimica et biophysica acta》2012,1817(10):1907-1913
The crystal structures of bacterial nitric oxide reductases (NOR) from Pseudomonas aeruginosa and Geobacillus stearothermophilus were reported. The structural characteristics of these enzymes, especially at the catalytic site and on the pathway that catalytic protons are delivered, are compared, and the corresponding regions of aerobic and micro-aerobic cytochrome oxidases, O(2) reducing enzymes, which are evolutionarily related to NOR are discussed. On the basis of these structural comparisons, a mechanism for the reduction of NO to produce N(2)O by NOR, and the possible molecular evolution of the proton pumping ability of the respiratory enzymes is discussed. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). 相似文献
13.
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme displays well-resolved hyperfine-shifted 1H NMR resonance assignable to the low-spin heme b center. The observed spectral changes induced by addition of cyanide to the protein were attributed to the structural perturbations on the low-spin heme (heme b) center by cyanide ligation to the nearby high-spin heme (heme o) of the protein. The oxidized hd oxidase shows extremely broad signals in the spectral region where protons near high-spin heme centers resonate. Addition of cyanide to the oxidized bd enzyme induced no detectable perturbations on the observed hyperfine signals, indicating the insensitive nature of this heme center toward cyanide. The proton signals near the low-spin heme b558 center are only observed in the presence of 20% formamide, consistent with a critical role of viscosity in detecting NMR signals of large membrane proteins. The reduced bd protein also displays hyperfine-shifted 1H NMR signals, indicating that the high-spin heme centers (hemes b595 and d) remain high-spin upon chemical reduction. The results presented here demonstrate that structural changes of one metal center can significantly influence the structural properties of other nearby metal center(s) in large membrane paramagnetic metalloproteins. 相似文献
14.
J H Hendriks L Prior A R Baker A J Thomson M Saraste N J Watmough 《Biochemistry》2001,40(44):13361-13369
Bacterial nitric oxide reductase (NOR), a member of the superfamily of heme-copper oxidases, catalyzes the two-electron reduction of nitric oxide to nitrous oxide. The key feature that distinguishes NOR from the typical heme-copper oxidases is the elemental composition of the dinuclear center, which contains non-heme iron (FeB) rather than copper (CuB). UV-vis electronic absorption and room-temperature magnetic circular dichroism (RT-MCD) spectroscopies showed that CO binds to Fe(II) heme b3 to yield a low-spin six-coordinate species. Photolysis of the Fe(II)-CO bond is followed by CO recombination (k(on) = 1.7 x 10(8) M(-1) x s(-1)) that is approximately 3 orders of magnitude faster than CO recombination to the active site of typical heme-copper oxidases (k(on) = 7 x 10(4) M(-1)x s(-1)). This rapid rate of CO recombination suggests an unimpeded pathway to the active site that may account for the enzyme's high affinity for substrate, essential for maintaining denitrification at low concentrations of NO. In contrast, the initial binding of CO to reduced heme b3 measured by stopped-flow spectroscopy is much slower (k(on) = 1.2 x 10(5) M(-1) x s(-1)). This suggests that an existing heme distal ligand (water/OH-) may be displaced to elicit the spin-state change observed in the RT-MCD spectrum. 相似文献
15.
The c-type nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans is an integral membrane protein that catalyzes NO reduction; 2NO + 2e− + 2H+ → N2O + H2O. It is also capable of catalyzing the reduction of oxygen to water, albeit more slowly than NO reduction. cNORs are divergent members of the heme-copper oxidase superfamily (HCuOs) which reduce NO, do not pump protons, and the reaction they catalyse is non-electrogenic. All known cNORs have been shown to have five conserved glutamates (E) in the catalytic subunit, by P. denitrificans numbering, the E122, E125, E198, E202 and E267. The E122 and E125 are presumed to face the periplasm and the E198, E202 and E267 are located in the interior of the membrane, close to the catalytic site. We recently showed that the E122 and E125 define the entry point of the proton pathway leading from the periplasm into the active site [U. Flock, F.H. Thorndycroft, A.D. Matorin, D.J. Richardson, N.J. Watmough, P. Ädelroth, J. Biol. Chem. 283 (2008) 3839-3845]. Here we present results from the reaction between fully reduced NOR and oxygen on the alanine variants of the E198, E202 and E267. The initial binding of O2 to the active site was unaffected by these mutations. In contrast, proton uptake to the bound O2 was significantly inhibited in both the E198A and E267A variants, whilst the E202A NOR behaved essentially as wildtype. We propose that the E198 and E267 are involved in terminating the proton pathway in the region close to the active site in NOR. 相似文献
16.
1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an antimycin- or myxothiazol-sensitive manner. However, nitric oxide was not detected by the electrode during the reduction of nitrate. Nitric-oxide synthesis from nitrate could be detected with cells in the presence of very low concentrations of Triton X-100 which selectively inhibits nitric-oxide reductase activity. 5. Nitric oxide was detected as an intermediate in denitrification by including haemoglobin with an anaerobic suspension of cells that was reducing nitrate. The characteristic spectrum of the nitric oxide derivative of haemoglobin was observed.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
17.
Kapetanaki SM Field SJ Hughes RJ Watmough NJ Liebl U Vos MH 《Biochimica et biophysica acta》2008,1777(7-8):919-924
The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. 相似文献
18.
Time-resolved resonance Raman (TR(3)) and time-resolved step-scan (TRS(2)) FTIR spectroscopies have been used to probe the structural dynamics at the heme b(3) proximal and distal sites after carbon monoxide photolysis from fully reduced CO-bound nitric oxide reductase. The Raman spectra of the transient species exhibit structural differences relative to the equilibrium geometry of heme b(3). The most significant of these is a shift of 8 cm(-1) to higher frequency of the 207 cm(-1) mode, and a shift of 7 cm(-1) to lower frequency of the nu(4) mode. Our results indicate that the 207 cm(-1) mode observed in the equilibrium-reduced heme b(3) originates from nu(Fe-His). Its behavior in the photolytic transients indicates that the relaxed Fe-His state is not significantly populated. We suggest that relaxation along the tilt angle (theta) of the proximal histidine with respect to the heme plane and the out-of-plane displacement of the Fe (q) are coupled, and ligand binding and dissociation are accompanied by significant changes in the angular orientation of the His ligand. The results are compared to those obtained for the aa(3)-cytochrome c oxidase from Paracoccus denitrificans. The results are compared to those obtained for the aa(3)-cytochrome c oxidase from P. denitrificans. The TR(3) and TRS(2) FTIR data demonstrate significant alterations in the nature of the heme-protein dynamics between nitric oxide reductase and heme-copper oxidases resulting from specific structural differences in their respective hemepockets. 相似文献
19.
The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction. 相似文献
20.
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested. 相似文献