首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of symbiosomes from yellow lupin root nodules for active Ca2+uptake and the sensitivity of their nitrogenase activity to a disturbance of the symbiotic Ca partition were investigated. The experiments carried out on the isolated symbiosomes and the peribacteroid membrane (PBM) vesicles, using Ca2+indicators arsenazo III and chlorotetracycline, and the cytochemical Ca visualization with potassium pyroantimonate (PA) provided evidence that an Mg-ATP-energized pump, most likely Mg2+-dependent Ca2+-ATPase catalyzing the active transport of Ca2+from the cytosol of the plant cell into the symbiosomes across the PBM, functions on this membrane. Depleting the symbiosomes of Ca both in vivoandin vitroby treating the intact nodules of yellow lupin root or the purified symbiosomes isolated from the latter with EGTA and Ca2+-ionophore A23187 substantially decreased their nitrogenase activity. The inhibitory effect of calcium deficit in the symbiosomes was not reversed by the addition of calcium to the incubation medium containing the plant tissues under study and was even enhanced under these conditions. The nitrogenase activity of the isolated symbiosomes not experiencing calcium deficit was also inhibited by the addition of relatively high concentrations of exogenous calcium to the incubation medium. These results seem to give evidence that the calcium status of nodule symbiosomes from yellow lupin roots controls their nitrogenase activity. The data obtained suggest that both Ca2+transport on PBM and the low passive permeability of this membrane for the given cation play the key role in such a control.  相似文献   

2.
Based on electron microscopic studies and visualization of calcium with the Ca indicator pyroantimonate, it was established that a prolonged incubation of the bean (Vicia faba L.) root nodules and isolated symbiosomes in EGTA-containing buffer depletes calcium in these nitrogen-fixing units. Other experiments demonstrated that the induction of calcium deficit in symbiosomes both in vivo and in vitro substantially decreases their nitrogenase activity. The addition of verapamil and ruthenium red, well-known inhibitors of Ca2+ channels, to the suspension of root nodules largely prevented both the EGTA-induced calcium efflux from the symbiosomes and the decrease in their nitrogenase activity. Similar effects of verapamil were also observed on isolated symbiosomes. The treatment of isolated symbiosomes with valinomycin in the presence of K+ induced a rapid efflux of Ca2+ from symbiosomes; this efflux was strongly inhibited by verapamil. The results present evidence for the existence in the peribacteroid membrane of a Ca2+-transporting system that exports Ca2+ from the symbiosomes.  相似文献   

3.
The plant hormone cytokinin stimulates nuclear migration followed by an asymmetric cell division in target cells of the protonema of the moss Funaria hygrometrica, leading to bud formation. The role of calcium in this developmental event was investigated by examining the effects of various calcium antagonists on the cytokinin-induced division. Calcium-free medium (buffered with EGTA), the extracellular Ca2+ antagonist La3+ (lanthanum), and the Ca2+ channel inhibitors D 600 and verapamil all block bud formation. These inhibitions are partially reversed by washing the cells or by raising the extracellular [Ca2+]. The Ca2+ ionophore A23187 partially reversed the effects of D 600 and verapamil. Bud formation is also inhibited by the intracellular Ca2+ antagonist TMB-8 (8-diethylamino)ocytl 3,4,5-trimethoxybenzoate HCl), and this inhibition is partially reversed by washing or raising the extracellular [Ca2+]. The cross walls of both the filaments and bud initial cells formed during TMB-8 exposure exhibit a distorted morphology. High concentrations of TMB-8 block nuclear migration. The calmodulin inhibitor trifluoperazine stops cytokinin-induced budding more effectively than the related compound chlorpromazine. Low concentrations of these two compounds do not affect nuclear migration; however, the target cell does not enter mitosis. These results support the hypothesis that a rise in intracellular calcium mediates cytokinin-induced bud formation in Funaria. It is concluded that the proposed cytokinin-induced rise in intracellular calcium may be effected in part by the activation of calmodulin. The essential source of Ca2+ appears to be extracellular, because blocking Ca2+ uptake with Ca2+ transport inhibitors can block both nuclear migration and subsequent division.  相似文献   

4.
We show here that both salinity and osmotic stress trigger transient increases in intracellular free Ca2+ concentration ([Ca2+]i) in cells of the nitrogen‐fixing filamentous cyanobacterium Anabaena sp. PCC7120, which constitutively expresses apoaequorin. Isoosmolar concentrations of salt (NaCl) and osmoticum (sucrose) induced calcium transients of similar magnitude and shape, suggesting that cells sense, via Ca2+ signalling, mostly osmotic stress. The Ca2+ transients induced by NaCl and sucrose were completely blocked by the calcium chelator ethylene glycol‐bis(b‐aminoethylether)N,N,N¢,N¢‐tetraacetic acid (EGTA) and were partially inhibited by the calcium channel blocker verapamil. Increased external Ca2+ and the Ca2+ ionophore calcimycin (compound A23187) enhanced Ca2+ influx further, suggesting the involvement of extracellular Ca2+ in the observed response to salinity and osmotic stress. However, the plant hormone abscisic acid (ABA) did not provoke any effect on the Ca2+ transients induced by both stresses, indicating that it may not be acting upstream of Ca2+ in the signalling of salinity and/or osmotic stress in Anabaena sp. PCC7120.  相似文献   

5.
To date, it has been established that the symbiosome membrane (SM), i.e., plant-derived membrane of symbiosomes, nitrogen-fixing compartments of legume root nodules, is equipped with Ca2+-ATPase transporting Ca2+ ions through the SM from the cytosol of infected cells into the symbiosome space (SS). Earlier in the experiments on the SM vesicles isolated from broad bean root nodules some data indicating the action of the Ca2+-ATPase as ATP-driven Ca2+/H+ antiporter were obtained. In the present work performed on isolated symbiosomes from the same plant object, further evidence in favor of calcium-proton countertransport mechanism of the pump operation was obtained. These were expressed in vanadate-sensitive alkalinization of the SS coupled with Ca2+ uptake by symbiosomes catalyzed by the SM Ca2+-ATPase, stimulation of the kinetics of the latter process in the response to artificial acidification of the SS and expectable modulation of ITP-hydrolyzing activity of this enzyme caused by the variation of pH within this compartment. The above findings are discussed in the framework of the model describing the mechanism of Ca2+-ATPase operation as an ATP-driven Ca2+/H+ exchanger and on this base allow us to put forward the hypothesis about the involvement of this enzyme in symbiosome signaling in a Ca2+- and pH-dependent manner.  相似文献   

6.
Microsomal membrane vesicles isolated from goat spermatozoa contain Ca2+-ATPase, and exhibit Ca2+ transport activities that do not require exogenous Mg2+ .The enzyme activity is inhibited by calcium-channel inhibitors,e.g. verapamil and diltiazem, like the well known Ca2+ , Mg2+-ATPase. The uptake of calcium is ATP (energy)-dependent and the accumulated Ca2+ can be completely released by the Ca2+ ionophore A23187, suggesting that a significant fraction of the vesicles are oriented inside out  相似文献   

7.
Changes in cytosolic free calcium concentration ([Ca2+]cyt) in response to mannitol (drought) and salt treatments were detected in vivo in intact whole Arabidopsis seedlings. Transient elevations of [Ca2+]cyt to around 1.5 µM were observed, and these were substantially inhibited by pretreatment with the calcium-channel blocker lanthanum and to a lesser extent, the calcium-chelator EGTA. The expression of three genes, p5cs, which encodes Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of the proline biosynthesis pathway, rab18 and Iti78 which both encode proteins of unknown function, was induced by mannitol and salt treatments. The induction of all three genes by mannitol was inhibited by pretreatment with lanthanum. Salt-induced p5cs, but not rab18 and Iti78, expression was also inhibited by lanthanum. Induction of p5cs by mannitol was also inhibited by the calcium channel-blockers gadolinium and verapamil and the calcium chelator EGTA, further suggesting the involvement of calcium signalling in this response. Mannitol induced greater levels of p5cs gene expression than an isoosmolar concentration of salt, at both relatively high and low concentrations. However, calcium transients were of a similar magnitude and duration in response to both mannitol and isoosmolar concentrations of salt, suggesting that a factor other than calcium is involved in the discrimination between drought and salinity signals in Arabidopsis. In order to gauge the involvement of the vacuole as an intracellular calcium store in the response of Arabidopsis to mannitol, [Ca2+]cyt was measured at the microdomain adjacent to the vacuolar membrane. The results obtained were consistent with a significant calcium release from the vacuole contributing to the overall mannitol-induced [Ca2+]cyt response. Data obtained by using inhibitors of inositol signalling suggested that this release was occurring through IP3-dependent calcium channels.  相似文献   

8.
Thyroliberin (TRH), dibutyryl cyclic AMP (db-cAMP), and 3-isobutyl-l-methylxanthine (MIX) had a stimulatory effect on prolactin (PRL) and growth hormone (GH) release from GH 3 cells. Half-maximal and maximal effects were observed for TRH at 2.5 nM and 10 nM; for db-cAMP at 0.6 mM and 5 mM, respectively. MIX (0.1 mM–1 mM) induced a dose-dependent accumulation of cellular cyclic AMP, while the hormone release was already maximally stimulated at 0.1 mM MIX. The maximal effects on hormone release of TRH and db-cAMP, but not of TRH and MIX, were additive.The Ca2+ channel blockers Co2+ (5 mM) and verapamil (100 M) and the Ca2+ chelator EGTA (4 mM) abolished the stimulatory effect of TRH (1 M) on hormone release. Co2+ and verapamil, but not EGTA, inhibited the stimulatory effect of db-cAMP (5 mM) on hormone release. The inhibitory effects of Co2+ and verapamil on GH release were counteracted by the combination of TRH and db-cAMP. For PRL release Co2+, but not verapamil, was able to inhibit the combined action of TRH and db-cAMP. Co2+, verapamil, and EGTA eliminated the stimulatory effect of MIX (1 mM) on PRL release while only Co2+ and EGTA affected the GH release. Hormone release in the presence of MIX plus verapamil or EGTA, but not Co2+, was increased by TRH.The calmodulin antagonist trifluoperazine (TFP) at 30 M inhibited basal hormone release and hormone release stimulated by TRH (1 M), db-cAMP (5 mM), and MIX (1 mM). The Ca2+ ionophore A23187 (5 M) had a stimulatory effect on basal hormone release which was abolished by 30 M TFP.  相似文献   

9.
Abstract: The toxicity of thapsigargin, a selective inhibitor of endoplasmic reticular Ca2+-ATPase, was investigated in GT1-7 cells, a murine hypothalamic cell line. Treatment of these cells with 50 or 100 nM thapsigargin greatly reduced cell viability at 24 and 48 h. These doses of thapsigargin induced a rapid rise in free cytosolic Ca2+ ([Ca2+]i), followed by a sustained increase. Addition of EGTA to chelate extracellular Ca2+ diminished somewhat the size of the initial increase of [Ca2+]i caused by thapsigargin, and abolished the sustained increase. The sustained increase could also be abolished by addition of La3+ and by SKF 96365, a drug selective for receptor-mediated calcium entry, but not by verapamil or flunarizine. Pretreatment with 50 µM BAPTA/AM, a cytosolic Ca2+ chelator, inhibited the peak [Ca2+]i caused by thapsigargin but did not inhibit the sustained elevation of [Ca2+]i. Neither EGTA nor BAPTA/AM inhibited the cell death induced by thapsigargin. The cell death was characterized by DNA fragmentation (“laddering”), nuclear condensation and fragmentation, and was inhibited by protein synthesis inhibitor cycloheximide, all characteristic of apoptotic cell death. Overexpression of the proto-oncogene bcl-2 in GT1-7 cells inhibited significantly DNA fragmentation, nuclear condensation and fragmentation, and cell death induced by thapsigargin. However, Bcl-2 did not alter either basal [Ca2+]i or the elevation of [Ca2+]i induced by thapsigargin. Our results suggest that abnormal Ca2+ release from endoplasmic reticulum caused by thapsigargin induces GT1-7 death by apoptosis and that this effect does not depend on Ca2+ influx from the extracellular space. Bcl-2 inhibited apoptosis induced by thapsigargin, but the mechanism is unlikely to be inhibition of endoplasmic reticular Ca2+ release in GT1-7 neuronal cells.  相似文献   

10.
The Ca2+ ionophore A23187 consistently induced the exit of Toxoplasma gondii trophozoites from cultured macrophages which they had recently infected. Following exit of toxoplasmas, the host macrophages underwent degeneration. A23187 was active at concentrations higher than 0.25 μM and the activity reached a plateau at the concentration of 1.0 μM. Noninfected macrophages or those engulfing heat-killed toxoplasmas, or some other particles, were not affected by treatment with A23187. The toxoplasmas exiting host cells were capable of infecting and proliferating in normal macrophages. The A23187-mediated exit of toxoplasmas proceeded despite external Ca2+ and was enhanced by the addition of ethylene glycol bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid (EGTA) in the reaction mixture. On the other hand, the A23187-mediated exit of toxoplasmas was inhibited significantly by exogenous Mg2+.  相似文献   

11.
M Singh 《Life sciences》1979,25(3):247-257
The present study utilized ionophore A23187 to determine the role of Ca2+ in pancreatic acinar cell metabolism. The ionophore A23187 in the presence of EGTA increased efflux of Ca2+ from the rat pancreatic fragments. Ionophore and CCK-PZ were equally effective in the presence of extracellular Ca2+ in stimulating 14C-labeled protein secretion. The ionophore decreased synthesis of new protein more effectively than CCK-PZ in the presence of extracellular Ca2+. The effect of ionophore and CCK-PZ in combination was greater than either agent alone. Phospholipid labeling was not stimulated by A23187 in the presence of extracellular Ca2+ in contrast to CCK-PZ. With CCK-PZ, the effect was dependent on the concentration of extracellular Ca2+. Protein phosphorylation was stimulated ~ 109% by CCK-PZ and ~ 39% by ionophore. CCK-PZ stimulated protein phosphorylation in the 100,000 g supernatant whereas A23187 was ineffective. Ionophore A23187 inhibited glucose oxidation whereas CCK-PZ stimulated glucose oxidation. These data suggest that more than one kinase system might be involved in metabolic responses to hormonal stimulation of the pancreas viz. a phosphorylase kinase may be directly activated by Ca2+ causing protein discharge whereas other kinase system may require binding of the hormone to receptor leading to other events besides protein discharge.  相似文献   

12.
The proton pumping activity of phase-partitioning purified plasma membrane fraction from spinach leaves was tested in vitro in the presence of exogenous indole-3-acetic acid. The sensitivity of the H+ pumping activity to the auxin was changed after flowering induction. We investigated the effect of whole spinach leaf treatments with substances affecting the phosphatidylinositol diphosphate transduction pathway on the in vitro sensitivity modification by photoperiodic induction. A role of calcium ions was supported by studies on leaves treated with a specific Ca2+ chelator (EGTA), a synthetic Ca2+ ionophore (A23187) or with calcium channel blokers (verapamil, lanthan chloride). An experiment using the transduction pathway inhibitor, lithium chloride, indicated that the intracellular concentration of Ca2+ was increased by inositol triphosphate.  相似文献   

13.
The role of Ca2+ in the induction of enzymes involved in fructan synthesis (FSS) mediated by sucrose was studied in wheat (Triticum aestivum). Increase of FSS enzyme activity and induction of the expression of their coding genes by sucrose were inhibited in leaf blades treated with chelating agents (EDTA, EGTA and BAPTA). Ca2+ channel blockers (lanthanum chloride and ruthenium red) also inhibited the FSS response to sucrose, suggesting the participation of Ca2+ from both extra- and intra- cellular stores. Sucrose induced a rapid Ca2+ influx into the cytosol in wheat leaf and root tissues, shown with the Ca2+ sensitive fluorescent probe Fluo-3/AM ester. Our results support the hypothesis that calcium is a component of the sucrose signaling pathway that leads to the induction of fructan synthesis.  相似文献   

14.
Ca2+-ATPase in the peribacteroid membrane (PBM) of symbiosomes isolated from Vicia faba root nodules was characterized in terms of its hydrolytic and transport activities. Both activities were found to be pH-dependent and exhibit pH optimum at pH 7.0. Translocation of Ca2+ through the PBM by the Ca2+-ATPase was shown to be fueled by ATP and other nucleotide triphosphates in the following order: ATP?>?ITP???GTP???UTP???CTP, the K m of the enzyme for MgATP being about 100 μM. Ca-dependent ITP-hydrolytic activity of symbiosomes was investigated in the presence of the Ca-EGTA buffer system and showed the affinity of PBM Ca2+-ATPase for Ca2+ of about 0.1 μM. The transport activity of Ca2+-ATPase was inhibited by erythrosin B as well as orthovanadate, but markedly stimulated by calmodulin from bovine brain. These results allowed us to conclude that this enzyme belongs to IIB-type Ca2+-ATPases which are present in other plant membranes.  相似文献   

15.
Normal growth of the fetal lung is dependent upon fetal breathing movements. We have previously demonsrated that mechanical strain, simulating fetal breathing movements, stimulated DNA synthesis and cell division by reaggregated alveolar-like structures of fetal rat lung cells. Herein, we report that both intracellular and extracellular calcium modulate strain-induced proliferative activity. Strain-induced cell proliferation was inhibited by BAPTA/AM, an intracellular calcium chelator. The intracellular calcium modulators, cyclopiazonic acid and 2,5-di-(tert-butyl)-1, 4-benzohydroquinone, increased DNA synthesis of unstrained cultures and partially reduced strain-induced cell growth activity. A similar effect was noted with the calcium ionophore A23187. Extracellular Ca2+ increased DNA synthesis in unstrained cultures in a concentration-dependent fashion. The stimulatory effect of strain on DNA synthesis was also dependent on the calcium concentration in the medium. Furthermore, strain-enhanced DNA synthesis was inhibited by the presence of a divalent ion chelator, EGTA, in the medium. Mechanical strain increased 45Ca2+ influx within 1 min after the onset strain. This rapid entry of calcium was not affected by calcium channel blockers, such as verapamil or Ni2+. Calcium channel blockers verapamil, nifedipine, Ni2+, Co2+, or La3+ also did not inhibit strain-induced cell growth activity. In contrast, gadolinium, a stretch-activated channel blocker, inhibited strain-induced 45Ca2+ influx and suppressed strain-enhanced DNA synthesis. We conclude that the entry of calcium into cells through stretch-activated ion channels plays a critical role in strain-induced fetal lung cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

16.
In this report, we have examined the effects of a calcium chelator, EGTA, and a calcium ionophore, A23187, on fusion of a cloned muscle cell line, L6. Our results confirm that EGTA essentially blocks all myoblast fusion because the lateral alignment of presumptive myoblasts cannot occur in the absence of extracellular calcium. A23187, however, promotes the precocious fusion of myoblasts, apparently by facilitating Ca2+ transport into myoblasts. We have also demonstrated that a Ca2+-activated protease, CAP (mM), appears to relocate in response to the Ca2+ flux, changing from a random, dispersed distribution in proliferative myoblasts to a predominantly peripheral distribution in prefusion myoblasts. Coincident with the mM CAF relocation is an altered distribution of a surface glycoprotein, fibronectin. Extracellular fibronectin is seen in abundance in proliferating myoblasts, but is essentially absent from the surface of fusing myoblasts. We suggest that mM CAF when activated by Ca2+ influx may act to promote the release of fibronectin from the myoblast cell surface, thus providing a mechanism by which the membrane of the fusing myoblast may be rearranged to accommodate fusion.  相似文献   

17.
In a transgenic strain of Caenorhabditis elegans carrying a stress-inducible lacZ reporter gene, short-term sublethal exposure to heavy metals activates transgene expression. The transgene response to Cd2+ is strongly inhibited by Ca2+ ions; furthermore, Ca2+ reduces the net accumulation of Cd2+ by worms. Both Ca2+ and a variety of calcium uptake inhibitors (nifedipine, La3+, verapamil) depress the dose response of the transgene to Cd2+. Calcium ionophore (A23187) slightly increases transgene activity in control and Cd2+ treated worms, but has a much larger effect in the case of Mn2+, reflecting its much greater affinity for this ion.  相似文献   

18.
S Heisler 《Life sciences》1976,19(2):233-242
The ionophore, A-23187, was an effective pancreatic secretagogue. The response to A-23187 was Ca2+-dependent; Mg2+ reduced the secretory response to the ionophore. A-23187-stimulated enzyme release was potentiated by dibutyryl cyclic AMP; in the presence of carbachol, output of pancreatic protein paralleled the response to A-23187 alone. The time-course for secretion with A-23187 was similar to that observed with carbachol. The ionophore did not affect basal cyclic AMP levels but did stimulate a rapid Ca2+-dependent production of pancreatic cyclic GMP which preceded the onset of the secretory response. A-23187 did not significantly alter basal or carbachol-stimulated 45Ca efflux from isotope preloaded glands; yet in Ca2+-lowered media, it inhibited (reversed) the secretory response to carbachol, an effect which may have been due to an outward transport by the ionophore of cholinergic-mobilized intracellular Ca2+. Like carbachol, A-23187, inhibits the incorporation of amino acid into new protein, the effect being partially dependent on extracellular Ca2+. The data suggest that the pancreatic cholinergic receptor acts as a Ca2+-ionophore and that extracellular Ca2+ is utilized in the synthesis of cyclic GMP.  相似文献   

19.
Both dibutyryl cAMP and carbachol stimulated amylase are released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 μM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 μM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

20.
The changes of cytosolic Ca2+ fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid(ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca2+ fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca2+ participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca2+ increase induced by PEG treatments, N,N,N′,N′-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca2+ fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca2+ fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca2+ current (ICa) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca2+ participated in the signals transduction process of osmotic stress, and the cytosolic free Ca2+ increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号