首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Effect of parathyroid hormone on plasma renin activity in humans   总被引:1,自引:0,他引:1  
The effect of PTH infusion on PRA was evaluated in 22 normotensive subjects. Intravenous infusion of PTH produced an increase in PRA in studied subjects. This increase in PRA was dose dependent from 1.505 +/- 0.226 to 2.500 +/- 0.346 nmol/l/hour after administration of 100 units of PTH and from 1.648 +/- 0.189 to 4.294 +/- 0.614 nmol/l/hour after 200 units of PTH and was markedly decreased by a beta blocking drug from 1.660 +/- 0.259 to 2.498 +/- 0.485 nmol/l/hour. These responses were observed without any significant changes in plasma calcium and blood pressure. From our results we can conclude that PTH increases PRA in normotensive controls. This effect is partly blocked by beta adrenergic blockers.  相似文献   

2.
3.
The effects of loading cardiopulmonary baroreceptors on basal norepinephrine and renin activity were studied in six normal subjects. Loading of cardiopulmonary baroreceptors was accomplished by a 60-min 30 degrees head-down tilt with small supplemental saline infusions. Central venous pressure was measured continuously by intrathoracic catheter; arterial pressure was measured indirectly by cuff. During the tilt, central venous pressure increased from 5.1 +/- 1.3 to 8.9 +/- 1.7 mmHg (P less than 0.001), whereas arterial pressure was unchanged. Plasma norepinephrine (185 +/- 85 pg/ml) and plasma renin activity (3.9 +/- 5.7 ng . ml-1 . h-1) did not change. Moderate sustained loading of cardiopulmonary baroreceptors is therefore without effect on unstressed plasma norepinephrine and renin activity in normal humans, suggesting that the tonic inhibitory effects of these receptors on these neurohumoral control systems are not readily increased in the basal state.  相似文献   

4.
In subjects who maintain a constant body mass, the increased energy expenditure induced by exercise must be compensated by a similar increase in energy intake. Since leptin has been shown to decrease food intake in animals, it can be expected that physical exercise would increase energy intake by lowering plasma leptin concentrations. This effect may be secondary either to exercise-induced negative energy balance or to other effects of exercise. To delineate the effects of moderate physical activity on plasma leptin concentrations, 11 healthy lean subjects (4 men, 7 women) were studied on three occasions over 3 days; in study 1 they consumed an isoenergetic diet (1.3 times resting energy expenditure) over 3 days with no physical activity; in study 2 the subjects received the same diet as in study 1, but they exercised twice daily during the 3 days (cycling at 60 W for 30 min); in study 3 the subjects exercised twice daily during the 3 days, and their energy intake was increased by 18% to cover the extra energy expenditure induced by the physical activity. Fasting plasma leptin concentration (measured on the morning of day 4) was unaltered by exercise [8.64 (SEM 2.22) 7.17 (SEM 1.66), 7.33 (SEM 1.72) 1 microg x l(-1) in studies 1, 2 and 3, respectively]. It was concluded that a moderate physical activity performed over a 3-day period does not alter plasma leptin concentrations, even when energy balance is slightly negative. This argues against a direct effect of physical exercise on plasma leptin concentrations, when body composition is unaltered.  相似文献   

5.
6.
7.
Intravenous infusion of somatostatin in mongrel dogs caused a significant decrease in the peripheral plasma renin activity (PRA) enhanced by pentobarbital sodium anesthesia or furosemide treatment. However, the inhibitory activity vanished within 10 min after termination of somatostatin infusion. Intrarenal arterial infusion of somatostatin decreased furosemide-enhanced PRA in renal vein by 24.0%, 16.6% and 8.6% in dose of 0.1, 0.5 and 1.0 microgram, respectively. On the other hand, high doses of the peptide (50-200 microgram) failed to decrease. The changes in PRA occurred in the absence of any alteration in blood pressure during the intravenous infusion under furosemide treatment. In an in vitro study, the addition of somatostatin in doses of 0.01 and 0.05 microgram suppressed the renin release in dog renal cortical cell suspension by 74.3% and 53.6%, respectively. Therefore, in both intrarenal arterial infusion and the cell suspension system, somatostatin was increasingly effective in decreasing renin release towards the lower end of the dose range tested. These results suggest that the effect of somatostatin on hyperreninemia may involve an inhibition of renin release at the cell level in the kidney.  相似文献   

8.
9.
Serum immunoreactive erythropoietin (siEp) was estimated in samples collected from members of two scientific and mountaineering expeditions, to Mount Kongur in Western China and to Mount Everest in Nepal. SiEp was increased above sea-level control values 1 and 2 days after arrival at 3,500 m and remained high on ascent to 4,500 m. Thereafter, while subjects remained at or above 4,500 m, siEp declined, and by 22 days after the ascent to 4,500 m was at control values but increased on ascent to higher altitude. Thus siEp was at a normal level during the maintenance of secondary polycythemia from high-altitude exposure. On descent, with removal of altitude hypoxia, siEp decreased, but despite secondary polycythemia levels remained measurable and in the range found in subjects normally resident at sea level. On Mount Everest, siEp was significantly (P less than 0.01) elevated above preexpedition sea-level controls after 2-4 wk at or above 6,300 m. There was no correlation between estimates of siEp and plasma renin activity in samples collected before and during both expeditions.  相似文献   

10.
11.
The antioxidant activity of green tea (GT) has been extensively studied; however, the results obtained from dietary intervention studies are controversial. In the present study we investigated the effect of the addition of two cups of GT (containing approximately 250 mg of total catechins) to a controlled diet in a group of healthy volunteers with respect to a group following the same controlled diet but not consuming GT. Antioxidant status and lipid profile in plasma, the resistance from oxidative damage to lipid and DNA, and the activity of glutathione peroxidase (GPX) in isolated lymphocytes were measured at the beginning and the end of the trial. After 42 days, consumption of GT caused a significant increase in plasma total antioxidant activity [from 1.79 to 1.98 micromol Trolox equivalent (TE)/ml, P<.001], significant decreases in plasma peroxides level (from 412 to 288 Carr U, P<.05) and induced DNA oxidative damage in lymphocytes (from 14.2% to 10.1% of DNA in tail, P<.05), a moderate although significant decrease in LDL cholesterol (from 119.9 to 106.6 mg/dL, P<.05) with respect to control. The present study suggests the ability of GT, consumed within a balanced controlled diet, to improve overall the antioxidative status and to protect against oxidative damage in humans.  相似文献   

12.
13.
14.
Blood pressure, plasma renin activity, and serum aldosterone, adrenaline and noradrenaline were investigated in healthy individuals and patients with the primary moderate hypertension following a single oral dose of 10 mg nifedipine. It was found that the drug is hypotensive in both healthy individuals and hypertensive patients. It does not affect the effective plasma flow throughout the kidneys as well as serum aldosterone and adrenaline whereas serum noradrenaline and plasma renin activity are increased.  相似文献   

15.
We studied the effects of a specific thromboxane (TX) synthetase inhibitor (U-63,557A) and a cyclooxygenase inhibitor on furosemide-induced renin release. Furosemide (2.0 mg X kg-1) was injected into Sprague-Dawley rats pretreated with indomethacin (10 mg X kg-1, i.v.), U-63,557A (1.0-32.0 mg X kg-1, i.v.), or vehicle (Na2CO3 0.03 M). Plasma renin activity was measured in blood samples collected 0, 10, 20, and 40 min after the injection of furosemide. Blood was also collected after the administration of vehicle, indomethacin, or U-63,557A for serum TXB2, a measure of platelet TXA2 synthesis. The results demonstrated that plasma renin activity rose with time following furosemide in the various groups of rats; indomethacin suppressed the furosemide-induced increments in plasma renin activity, while U-63,557A at doses of 4-8 mg X kg-1 augmented it. At doses below 4 mg X kg-1 or above 8 mg X kg-1, U-63,557A did not augment renin secretion. Indomethacin and U-63,557A reduced serum thromboxane by 81 and 90%, respectively. Thus, these experiments suggest that thromboxane synthetase inhibition, within a narrow dosage range, potentiates furosemide-induced renin release while cyclooxygenase inhibition suppresses it.  相似文献   

16.
M D Johnson 《Life sciences》1985,36(25):2403-2411
Previous experiments have shown that circulating epinephrine stimulates renin secretin and increases plasma renin activity (PRA) when it is infused intravenously, but not when it is infused directly into the renal artery at similar infusion rates. The present experiments were designed to test the hypothesis that the adrenal glands mediate the PRA response to intravenous epinephrine infusion. Accordingly, anesthetized dogs were prepared with either an acute bilateral adrenalectomy or a sham-adrenalectomy procedure. Epinephrine was then infused intravenously into each animal for 45 minutes at a rate of 25 ng X kg-1 X min-1. Time control experiments in which epinephrine was not infused were also conducted. In sham-adrenalectomized dogs, PRA (in nanograms per ml h-1) rose from 4.1 +/- 1.4 in the control period to 13.0 +/- 3.0 during intravenous epinephrine infusion (means +/- SE; p less than 0.01). In adrenalectomized dogs, PRA rose from 2.1 +/- 0.4 during the control period to 5.5 +/- 0.9 during intravenous epinephrine infusion (p less than 0.01). Neither the absolute increments in PRA nor the percent increases in PRA were significantly different between the two groups receiving epinephrine. PRA remained unchanged in time control experiments. These data demonstrate that the adrenal glands need not be present in order for intravenous epinephrine infusion to elicit an increase in PRA. The data do not support the hypothesis, therefore, that epinephrine-induced increases in PRA are initiated by receptors located within the adrenal glands.  相似文献   

17.
The effects of endogenous Plasma Renin Substrate (PRS) on the relationship between Plasma Renin Activity (PRA) and the Plasma Renin Concentration (PRC) have been studied in hyperthyroid rats, by I-triiodothyronine (T3) administration and in hypothyroid rats, by propylthiouracil (PTU) treatment, to clarify if PRA changes are an adequate index for evaluating the renin-angiotensin changes during the alterations in the thyroid function. Although in experimental situations studied the induced variation on PRC explains a 62 per cent of the changes in PRA, finding a good lineal correlation between both parameters (r = 0.79, P less than 0.001). Not only does PRS play an important role on the kinetic of the enzymatic reaction but also explains jointly with PRC up to a 85 per cent of PRA alterations. PRS changes become more important during thyrotoxicosis where they limit in a higher degree the velocity of reaction due to inverse relationship between PRC and PRS (r = 0.74, P less than 0.001).  相似文献   

18.
Propranolol administration to rats was studied for its effects on plasma renin activity, renal renin content, and adrenal and brain isorenins. Propranolol was given intraperitoneally at 6 and 30 mg/kg/day for a 15-day period. Pulse rate was significantly decreased. There were no effects on the isorenin content of adrenal or brain tissue or on renal renin content. Rats responded in two completely different ways with respect to plasma renin activity. Two-fifths had a total suppression of plasma renin activity; the rest had concentrations similar to those in controls. These observations are consistent with those seen during chronic administration of propranolol to hypertensive patients and suggest that its antihypertensive effect may in some patients be through the suppression of renin release. Its mechanism of action in most patients remains at present unclear.  相似文献   

19.
20.
An increase in atrial pressure has been shown to cause an increase in the concentration of atrial peptides (atriopeptin) in plasma. We therefore hypothesized that a reduction in atrial pressure would decrease the concentration of atriopeptin in plasma. In formulating this hypothesis we assumed that changes in the concentration of other circulating hormones or changes in cardiac nerve activity during hemorrhage would not affect the secretion of atriopeptin. To test the hypothesis, we bled sham-operated conscious dogs at a rate of 0.8 ml.kg-1.min-1 to decrease right and left atrial pressures. Hemorrhage was continued until a total of 30 ml of blood per kilogram body weight had been removed. Identical experiments were performed on conscious cardiac-denervated dogs. The concentration of plasma atriopeptin was decreased in each group of dogs after 10 ml of blood per kilogram of body weight had been removed, but the decrease achieved statistical significance only in the cardiac-denervated dogs. Further hemorrhage, however, produced no further decreases in circulating atriopeptin in either group even though atrial pressures continued to decline as more blood was removed. A comparison of the atriopeptin response to hemorrhage revealed no significant difference between the sham-operated and cardiac-denervated dogs, thus providing no evidence for a specific effect of cardiac nerves on atriopeptin secretion during hemorrhage. Our results demonstrate that the relationship between atrial pressure and plasma atriopeptin that has been observed repeatedly during atrial stretch is not evident during relatively slow, prolonged hemorrhage. There is, however, a small decline in circulating atriopeptin during the initial stage of hemorrhage that could be of biological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号