首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we have found that chemotactic factors stimulate neutrophils in suspension to aggregate. Because of an obvious analogy to platelet aggregation, we examined the influence of three prostaglandins on this process. Prostaglandins E1, E2 and F alone did not cause aggregation of the neutrophils but were able to partially inhibit the aggregation response induced by the synthetic chemotactic tripeptide, formly-methionyl-leucyl-phenylalanine. The minimal inhibitory concentrations for prostaglandins E1, E2 and F were 10−7, 10−6 and 10−5M, respectively. These results are similar to those found for the prostaglandin-induced inhibition of platelet aggregation. It may be, therefore, that neutrophil aggregation, like platelet aggregation, is modulated by intracellular prostaglandins and other products of arachidonic acid metabolism.  相似文献   

2.
Intracerebroventricular administration of prostaglandins E1 or E2 was shown to block, while PGF increased the incidence of tonic convulsion due to electroshock in mice. The Prostaglandins were administered intracerebroventricularly (i.c.v.) to conscious mice by a modification of Haley and McCormick's method (1) prior to a transcorneal maximal electroshock (MES) or a transcorneal supra-maximal electroshock (SMES). PGE1 and PGE2 i.c.v. blocked the tonic hindlimb extension (THE) and protected the animals from death induced by MES with ED50's for PGE1 and PGE2 for inhibition of the THE of 6.6 (4.3–12.0) μg/mouse i.c.v. and 13.3 (8.9–22.4) μg/mouse i.c.v. respectively. When PGE2 was administered intraperitoneally (i.p.) in doses as high as 4.0 mg/kg it did not block the THE. However, the duration of the THE as well as the mortality were reduced by doses of 0.5–4.0 mg/kg PGE2 i.p.. Both PGE1 and PGE2 were shown to cause a dose related significant (p<.001) decrease in the duration of the THE with SMES in doses of 1–10 μg/mouse i.c.v. for PGE1 and 2–40 μg/mouse i.c.v. for PGE2. PGF, administered i.c.v. prior to a transcorneal electroshock equivalent to a current at the ED1 level, increased the incidence of the THE as well as the mortality in doses of 20–50 μg/mouse.  相似文献   

3.
Prostaglandin E2 (PGE2) secreted by Day-6, Day-7, Day-8 and Day-9 equine embryos (ovulation = Day 0) during in vitro incubation was measured by radioimmunoassay. Embryonic PGE2 secretion (ng/embryo/24 hr) was detectable on Day 6 (0.27±0.39), tended to increase (P <0.1) on Day 7 (0.57±0.88), and increased significantly (P <0.05) on Day 8 (2.23±0.86) and Day 9 (4.13±0.71). Embryo diameter at the start of the incubation period was linearly correlated (P <0.01) to embryonic PGE2 secretion.  相似文献   

4.
Rat small bowel was perfused and in the absence of biliary and pancreatic secretion. Intraluminal release of sucrase, alkaline phosphatase, aminopeptidase and enterokinase was significantly increased after administration of PG E1 and E2 1 and 5 μg/kg. This suggests a direct stimulation of the intestinal mucosa, which might be mediated through cyclic AMP ; dibutyryl cAMP significantly stimulates intraluminal release of proteins, sucrase and enterokinase.  相似文献   

5.
The role of the central nervous system (CNS) in the antiarrhythmic effects of prostaglandins (PGs) E2, F, and I2 was studied by administering each agent into the left lateral cerebral ventricle (i.c.v. administration) of chloralose-anesthetized cats. The cardiac arrhythmias were produced by intravenous (i.v.) infusion of ouabain (1 μg/kg/min). The PGs E2, F and I2 on i.c.v. administration in the dose range of 1 ng to 10 μg failed to inhibit ouabain-induced cardiac arrhythmias. However, when infused i.v., PGE2 (1 μg/kg/min), PGF (5 μg/kg/min), and PGI2 (2 μg/kg/min) effectively suppressed these arrhythmias. The standard antiarrhythmic drug propanolol (0.5–8.0 mg)oni.c.v.administration also significantly reduced the ouabain-induced cardiac arrhythmias. It is suggested that the CNS is not the site of action of PGs E2, F, and I2 in antagonising the ouabain-induced cardiotoxicity in cats.  相似文献   

6.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE2, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P < 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P < 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

7.
In confluent cultures of “young” (< 30 generations) human fibroblasts, maximally effective concentrations of prostaglandin E1 (5.6 μM) and isoproterenol (2 μM) increased cyclic AMP content several hundred-fold and approximately 30-fold, respectively. On the first day after initiation of cultures at either low (approx. 3 · 105 cells) or high (approx. s · 106 cells) cell density the magnitude of the isoproterenol effect was similar to that in confluent cultures. It increased during the next few days, reaching a maximum around day 2–3, and then declined. On any day during the period of subculture, the magnitude of the isoproterenol effect was inversely related to cell density. Alterations in response to prostaglandin E1 as a function of time in subculture or cell density were less dramatic. The effects of prostaglandin E1 were, however, smaller at some point during the first few days of subculture than after day 7, and when effects of prostaglandin E1 were minimal, those of isoproterenol were maximal and approached those of prostaglandin E1. On any day of subculture, cells in cultures of higher density tended to accumulate more cyclic AMP in response to prostaglandin E1 than did those in low density cultures. The effects of prostaglandin E1 and isoproterenol on cyclic AMP content were qualitatively similar in “young” and in “old” (> 60 generations in culture) human fibroblasts although the changes associated with duration of subculture and cell density tended to be less marked with “old” cells. In the “young” fibroblasts responsiveness to isoproterenol and prostaglandin E1 appears to correlate with cell morphology and with the fractional rate of growth in subcultures. It is suggested that the capacities of the fibroblasts to respond to these two agents may be altered independently during growth of human fibroblasts.  相似文献   

8.
Twenty crossbred gilts with at least 2 consecutive estrous cycles of 18 to 21 days in length were used to study the effects of prostaglandins E2 and F2α (PGE2 and PGF2α) on luteal function in indomethacin (INDO) treated cycling gilts. Intrauterine and jugular vein catheters were surgically palced before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 5 treatment groups (4/groups). With exception of the controls (Group I) all gilts received 3.3 mg/kg INDO every 8 h, Groups III, IV and V received 2.5 mg PGF2; 2.5 mg PGF2α + 400 μg PGE2 every 4 hr, or 400μg PGE2 every 4 h, respectively. All treatments were initiated on day 7 and continued until estrus or day 23. Jugular blood for progesterone analysis was collected twice daily from day 7 to 30. Estradiol-17β (E2-17β) concentrations were dtermined in samples collected twice daily, from 2 d before until 2 d following the day of estrus onset. When compared to pretreatment values, estrous cycle length was unaffected (P>0.05) in Group I, prolonged (P<0.05) in Groups II, IV and V; and shortened (P<0.05) in Group III. The decline in plasma progesterone concentration that normally occurs around day 15 was unaffected (P>.05) in Group I; delayed (P<0.05) in Groups II, IV and V; and occurred early (P<0.05) in Group III. Mean E2-17β remained high (31.2 ± 4.9 to 49.3 ± 3.1 pg/ml) in Groups III and IV, while the mean concentrations in Groups III and V varied considerably (17.0 ± 2.0 to 52.2 ± 3.5 pg/ml). The results of this study have shown that PGE2 will counteract the effects of PGF2α in INDO treated cycling gilts. The inclusion of PGF2α appeared to either stimulate E2-17β secretion or maintain it at a higher level than other treatments.  相似文献   

9.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

10.
Prostaglandins E1 and E2 are thought to be inhibitors of the growth of systemic vascular smooth muscle cells (SMC). However, their effect on the proliferation of SMC from the pulmonary artery (PA) has not been described and was the subject of this investigation. Cultures of bovine PA SMC were exposed to PGE1 and PGE2 under various conditions and their growth was assessed. PGE1 and PGE2 did not inhibit the growth of PA SMC in 10% fetal calf serum (FCS), but instead caused a dose dependent (10 ng - 1 μg/ml) increase in [3H]-thymidine incorporation when added to cultures containing 0.5% FCS; the highest doses resulted in 95% and 75% increases in [3H]-thymidine uptake at 24 hours with PGE1 and PGE2 respectively. This was accompanied by a modest increase in actual cell numbers (e.g., 20% with 1 μg/ml PGE1). Furthermore, PGE1 could mimic insulin-like growth factor (IGF-1) by potentiating the stimulation of SMC growth by fibroblast growth factor, suggesting that PGE1 may act as a progression factor in the growth cycle of these cells. There was, however, no effect of PGE1 on the proliferation of bovine aortic SMC. We conclude that, contrary to most reported effects on systemic SMC, PGE1 and PGE2 do not inhibit the proliferation of PA SMC but rather stimulate it.  相似文献   

11.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained on PGF relative binding affinity to the bovine CL can be compared to data obtained independently on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

12.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

13.
Rat adipocyte plasma membranes sacs have been shown to be a sensitive and specific system for studying prostaglandin binding. The binding of prostaglandin E1 and prostaglandin A1 increases linearly with increasing protein concentration, and is a temperature-sensitive process. Prostaglandin E1 binding is not ion dependent, but is enhanced by GTP. Prostaglandin A1 binding is stimulated by ions, but is not affected by GTP.Discrete binding sites for prostaglandin E1 and A1 were found. Scatchard plot analysis showed that the binding of both prostaglandins was biphasic, indicating two types of binding sites. Prostaglandin E1 had association constants of 4.9 · 109 1/mole and 4 · 108 1/mole, while the prostaglandin A1 association constants and binding capacities varied according to the ionic composition of the buffer. In Tris-HCl buffer, the prostaglandin A1 association constants were 8.3 · 108 1/mole and 5.7 · 107 1/mole, while in the Krebs—Ringer Tris buffer, the results were 1.2 · 109 1/mole and 8.6 · 106 1/mole.Some cross-reactivity between prostaglandin E1 and A1 was found for their respective binding sites. Using Scatchard plot analysis, it was found that a 10-fold excess of prostaglandin E1 inhibited prostaglandin A1 binding by 1–20% depending upon the concentration of prostaglandin A1 used. Prostaglandin E1 competes primarily for the A prostaglandin high-affinity binding site. Similar Scatchard analysis using a 20-fold excess of prostaglandin A1 inhibited prostaglandin E1 binding by 10–40%. Prostaglandin A1 was found to compete primarily for the E prostaglandin low-affinity receptor.All of the bound [3H]prostaglandin E1, but only 64% of the bound [3H]-prostaglandin A1 can be recovered unmetabolized from the fat cell membrane. There is no non-specific binding of prostaglandin E1, but 10–15% of prostaglandin A1 binding to adipocyte membranes is non-specific. Using a parallel line assay to measure relative affinities for the E binding site, prostaglandin E1 > prostaglandin A2 > prostaglandin F. Prostaglandin E2 and 16,16-dimethyl prostaglandin E2 were equipotent with prostaglandin E1, while other prostaglandins had lower relative affinities. 7-Oxa-13-prostynoic acid does not appear to antagonize prostaglandin activity in adipocytes at the level of the receptor.  相似文献   

14.
The crystal and molecular structure of prostaglandin E2 (PGE2) has been determined by X-ray diffraction. The compound crystallizes in the triclinic space group P1 with Z = 1 and , , , α = 87.347°, β = 94.042°, and γ = 91.010°. Gauche-gauche interactions appear in both side chains. The efficient molecular packing and hydrogen bonding network appears to stabilize the observed molecular conformation.  相似文献   

15.
Blood pressure and heart rate effects of prostaglandin E2 and F were examines after administrating each agent into the left lateral brain ventricle of chloralose-anesthethized cats. Administration of prostaglandin E2 (1 μg) resulted in significant, prolonged increases in arterial pressure (25.7 ± 6.7 mm Hg) and heart rate (19.4 ± 7.7 beats/min). These responses were mimicked when the same dose of prostagland E2 was administered into the restricted to the lateral and third ventricles via cannulation of the cerebral aqueduct, whereas no significant cardiovascular occured with administration into the fourth ventricle. Intravenous injection of prostaglandin E2 resulted in a transient decrease in blood pressure but no change in heart rate. Administration of prostaglandin F (1 and 3 μg) into the CNS produced no significant cardiovascular responses. The same was true when prostaglandin F was administered by the intravenous route. These results indicate that pronounced cardiovascular effects can be produced by administering prostaglandin E2 but not F into the CNSm and that the central site of action of prostaglandin E2 is in the forebrain.  相似文献   

16.
Prostaglandin (PG)F, E2, D2 and 6-keto-F were determined in human cerebrospinal fluid by a mass spectrometric technique. The samples were obtained from 12 patients with suspected intracranial disease. A 64 fold variation in PG levels was observed. The major PG was 6-keto-F (0.12–15 ng/ml). PGF and PGE2 were present in lower concentrations PGD2 was below the level of detection (0.05 ng/ml) except in one patient with extremely high total levels of PGs.  相似文献   

17.
Six newborns with obstructive right heart lesions were examined neurologically and electroencephalographically during treatment with prostaglandin (PG) E1 or E2 given to maintain patency of the ductus arteriosus and to increase pulmonary blood flow. PG was administered intravenously or intraarterially in the aortic isthmus proximal to the ductus arteriosus. Besides a rise in arterial oxygen saturation, all patients had some sign of central nervous system involvement. The electroencephalogram showed minor changes suggestive of sedation. In addition, three patients in whom PG given intravenously presented various combinations of neurological abnormalities (“myoclonic jerks”, apnoeic spells, hiccup) of subcortical origin. Side-effects subsided after stopping the treatment anf posed no problem in the management of the patients. These findings confirm the usefulness and safety of the PG therapy and indicate that the intraaortic route of administration is preferable.  相似文献   

18.
Pretreatment of membranes for 1 hr at 4° with up to 0.1% Triton X-100 (TX-100) and sodium desoxycholate (SDC), resulted in a greater loss of [3H] prostaglandin (PG)F2α binding compared to E1 binding. Lubrol WX (LWX) tended to cause a greater loss of [3H]PGF2α than E1 binding. However, the differential loss was not as marked as with TX-100 or SDC. Triton X-305 was relatively ineffective, but loss of [3H]PGE1 binding was greater than for PGF2α. Increasing concentrations of dimethylsulfoxide (DMSO) progressively inhibited PGF2α binding without affecting PGE1 binding. The detergent, but not DMSO, induced losses of membrane PG binding were due to solubilization of the receptors. Greater amounts of membrane protein and phospholipids were solubilized at detergent (TX-100 and SDC) concentrations that solubilized 100% of PGE1 receptors compared to 100% solubilization of F2α receptors. Neither the duration of preincubation nor the amount of membrane protein chosen were responsible for differential PGE1 and F2α receptor losses. These differential membrane PG receptor losses raise the possibility of differences in PGE1 and F2α receptors association with the membrane structure.  相似文献   

19.
We have investigated the direct effects of prostaglandins E1, E2, F and D2 on renin release from rabbit renal cortical slices. Prostaglandin E1 (PGE1) was the most potent stimulant of renin release, while PGE2 was 20–30 fold less active. PGF was found not to be an inhibitor of renin release as reported by others, but rather a weak agonist. PGD2 up to a concentration of 10 μg/ml had no activity in this system. That the stimulation of renin release by PGE1 is a direct effect is supported by the finding that PGE1-induced release is not blocked by L-propranolol or by Δ5,8,11,14-eicosatetraynoic acid (ETYA), a prostaglandin synthesis is inhibitor. The fatty acid precursor of PGE1, Δ8,11,14-eicosatrienoic acid, also stimulated renin release, an effect which was blocked by ETYA. In addition to the above findings, ethanol, a compound frequently used to dissolve prostaglandins, was shown to inhibit renin release.  相似文献   

20.
Prostaglandin E2 and F infusions have been tested for their ability to reduce the arrhythmias associated with occlusion of the left descending coronary artery in the anaesthetised dog. At 1 μg/kg/min both PGs reduced the incidence of premature ventricular contractions occurring during 25-min occlusions, while not reducing the incidence of ventricular fibrillation occurring on occlusion release. When infused for 5-min periods at 1 to 16 μg/kg/min, neither PGE2 nor PGF effectively reduced the frequency of ventricular arrhythmias occurring 24 hr after a permanent coronary occlusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号