首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method for the preparation of various species of porphobilinogen stereospecifically labelled with 3H in the side chains (at C-6, C-7 and C-8) is described. These labelled samples were used to study the mechanism and stereochemistry of anaerobic as well as aerobic coproporphyrinogen III oxidase of light-grown Rhodopseudomonas spheroides. It was shown that both the oxidases catalyse the conversion of the propionate side chains of coproporphyrinogen III into the vinyl groups of protoporphyrinogen IX, (formula; see text) with the labilization of the pro-S-hydrogen atom at the beta-position. These results are similar to those previously recorded for such conversions in animal and plant systems. In the light of the cumulative information available to date, mechanisms for the conversion, (formula; see text) are discussed and doubt is cast on the participation of hydroxylated intermediates in the process.  相似文献   

2.
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme.  相似文献   

3.
5-Aminolaevulinate containing tritium at C-3 and C-5 was converted into haem using a preparation of anaemic chicken blood. The biosynthetic haem was degraded to ethylmethyl maleimide and haematinic acid which had relative tritium radioactivity of 0.58 and 1.0 respectively. These results indicated that in the formation of the vinyl group of haem only one of the hydrogen atoms from the beta-positions of two propionate side chains of coproporphyrinogne III was removed. Haem was also biosynthesised from [(3R)-3H1]2-oxoglutarate. The determination of relative radioactivity in ethylmethyl maleimide and haematinic acid endorsed the above conclusion and further indicated that the pro-R hydrogen atoms located at the beta-positions of the propionate side chains are retained in haem biosynthesis. In order to explore the status of hydrogen atoms located at the alpha-positions of propionate side chains haem was biosynthesised using [2RS)-3H2]succinate, [(2R)-3H1]succinate and [(2S)-3H1]succinate. Degradation of the three samples of haem into ethylmethyl maleimide and haematinic acid showed that both the vinyl groups of haem are formed through the loss of pro-S hydrogen atoms located at the beta-positions of the propionic acid side chains of coproporphyrinogen III. The results further showed that the hydrogen atoms located at the alpha-positions of the side chains are not involved in the biosynthesis of haem. Various mechanisms for the formation of vinyl groups in the biosynthesis are discussed.  相似文献   

4.
The S-adenosylmethionine (AdoMet) radical enzyme oxygen-independent coproporphyrinogen III oxidase HemN catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX during bacterial heme biosynthesis. The recently solved crystal structure of Escherichia coli HemN revealed the presence of an unusually coordinated iron-sulfur cluster and two molecules of AdoMet. EPR spectroscopy of the reduced iron-sulfur center in anaerobically purified HemN in the absence of AdoMet has revealed a [4Fe-4S](1+) cluster in two slightly different conformations. M?ssbauer spectroscopy of anaerobically purified HemN has identified a predominantly [4Fe-4S](2+) cluster in which only three iron atoms were coordinated by cysteine residues (isomer shift of delta = 0.43 (1) mm/s). The fourth non-cysteine-ligated iron exhibited a delta = 0.57 (3) mm/s, which shifted to a delta = 0.68 (3) mm/s upon addition of AdoMet. Substrate binding by HemN did not alter AdoMet coordination to the cluster. Multiple rounds of AdoMet cleavage with the formation of the reaction product methionine indicated AdoMet consumption during catalysis and identified AdoMet as a co-substrate for HemN catalysis. AdoMet cleavage was found to be dependent on the presence of the substrate coproporphyrinogen III. Two molecules of AdoMet were cleaved during one catalytic cycle for the formation of one molecule of protoporphyrinogen IX. Finally, the binding site for the unusual second, non iron-sulfur cluster coordinating AdoMet molecule (AdoMet2) was targeted using site-directed mutagenesis. All AdoMet2 binding site mutants still contained an iron-sulfur cluster and most still exhibited AdoMet cleavage, albeit reduced compared with the wild-type enzyme. However, all mutants lost their overall catalytic ability indicating a functional role for AdoMet2 in HemN catalysis. The reported significant correlation of structural and functional biophysical and biochemical data identifies HemN as a useful model system for the elucidation of general AdoMet radical enzyme features.  相似文献   

5.
6.
5-Aminolaevulinate synthetase cataylses the condensation of glycine and succinyl-CoA to give 5-aminolaevulinic acid. At least two broad pathways may be considered for the initial C--C bond forming step in the reaction. In pathway A the Schiff base of glycine and enzyme bound pyridoxal phosphate (a) undergoes decarboxylation to give the carbanion (b) which then condenses with succinyl-CoA with the retention of both the original C2 hydrogen atoms of glycine. In pathway B, loss of a C2 hydrogen atom gives another type of carbanion (c) that reacts with succinyl-CoA. Evidence has been presented to show that the initial C--C bond forming event occurs via pathway B which involves the removal of the pro R hydrogen atom of glycine. Subsequent mechanistic and stereochemical events occurring at the carbon atom destined to become C5 of 5-aminolaevulinate have also been delineated.(Carticle) Several mechanistic alternatices for the formation of the two vinyl groups of haem from the propionate residues of the precursor, coproporphyrinogen III, have been examined. (see article). It is shown that during the biosynthesis both the hydrogen atoms resident at the alpha positions of the propionate side chains remain undisturbed thus eliminating mechanisms which predict the involvement of acrylic acid intermediates. Biosynthetic experiments performed with precursors containing stereospecific labels have shown that the two vinyl groups of haem are formed through the loss of pro S hydrogen atoms from the beta-positions of the propionate side chains. In the light of these results, three related mechanisms for the conversion, propionate leads to vinyl, have been considered. In order to study the mechanism of porphyrinogen carboxy-lyase reaction, stereo-specifically deuterated, tritiated-succinate was incorporated into the acetate residues of uroporphyrinogen III which on decarboxylation generated asymmetric methyl groups in coproporphyrinogen III and then in haem. Degradation of the latter yielded chiral acetate deriving from C and D rings of haem. Configurational analysis of this derivate acetate shows that the carboxy-lyase reaction proceeds with a retention of configuration.  相似文献   

7.
During heme biosynthesis in Escherichia coli two structurally unrelated enzymes, one oxygen-dependent (HemF) and one oxygen-independent (HemN), are able to catalyze the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Oxygen-dependent coproporphyrinogen III oxidase was produced by overexpression of the E. coli hemF in E. coli and purified to apparent homogeneity. The dimeric enzyme showed a Km value of 2.6 microm for coproporphyrinogen III with a kcat value of 0.17 min-1 at its optimal pH of 6. HemF does not utilize protoporphyrinogen IX or coproporphyrin III as substrates and is inhibited by protoporphyrin IX. Molecular oxygen is essential for the enzymatic reaction. Single turnover experiments with oxygen-loaded HemF under anaerobic conditions demonstrated electron acceptor function for oxygen during the oxidative decarboxylation reaction with the concomitant formation of H2O2. Metal chelator treatment inactivated E. coli HemF. Only the addition of manganese fully restored coproporphyrinogen III oxidase activity. Evidence for the involvement of four highly conserved histidine residues (His-96, His-106, His-145, and His-175) in manganese coordination was obtained. One catalytically important tryptophan residue was localized in position 274. None of the tested highly conserved cysteine (Cys-167), tyrosine (Tyr-135, Tyr-160, Tyr-170, Tyr-213, Tyr-240, and Tyr-276), and tryptophan residues (Trp-36, Trp-123, Trp-166, and Trp-298) were found important for HemF activity. Moreover, mutation of a potential nucleotide binding motif (GGGXXTP) did not affect HemF activity. Two alternative routes for HemF-mediated catalysis, one metal-dependent, the other metal-independent, are proposed.  相似文献   

8.
Uroporphyrinogen decarboxylase (UROD) and coproporphyrinogen oxidase (copro'gen oxidase) are two of the least well understood enzymes in the heme biosynthetic pathway. In the fifth step of the pathway, UROD converts uroporphyrinogen III to coproporphyrinogen III by the decarboxylation of the four acetic acid side chains. Copro'gen oxidase then converts coproporphyrinogen III to protoporphyrinogen IX via two sequential oxidative decarboxylations. Studies of these two enzymes are important to increase our understanding of their mechanisms. Assay comparisons of UROD and copro'gen oxidase from chicken blood hemolysates (CBH), using a newly developed micro-assay, showed that the specific activity of both enzymes is increased in the micro-assay relative to the large-scale assay. The micro-assay has distinct advantages in terms of cost, labor intensity, amount of enzyme required, and sensitivity.  相似文献   

9.
Structure and function of radical SAM enzymes   总被引:1,自引:0,他引:1  
'Radical SAM' enzymes juxtapose a [4Fe-4S] cluster and S-adenosyl-l-methionine (SAM) to generate catalytic 5'-deoxyadenosyl radicals. The crystal structures of oxygen-independent coproporphyrinogen III oxidase HemN and biotin synthase reveal the positioning of both cofactors with respect to each other and relative to the surrounding protein environment. Each is found in an unprecedented coordination environment including the direct ligation of the [4Fe-4S] cluster by the amino nitrogen and one carboxylate oxygen of the methionine moiety of SAM, as observed for other members of the Radical SAM family by ENDOR. The availability of two protein structures supported by biochemical and biophysical data underscores common features, anticipating the structural elements of other family members. Remaining differences emphasize the plasticity of the protein scaffold in functionally accommodating 600 family members.  相似文献   

10.
1. The decarboxylations of uroporphyrinogens, hepta-, hexa- and penta-carboxyporphyrinogens I and III by porphyrinogen carboxy-lyase (EC 4.1.1.37) in rat liver supernatant have been compared as functions of substrate concentrations. Although Km and Vmax. (for total porphyrinogens formed) were estimated, prophyrinogens and CO2 produced at 1 microM were considered to be a better indication of real relative rates, owing to substrate/product inhibitions. Uroporphyrinogen III was the best substrate by the criteria of Km/Vmax. and decarboxylation at 1 microM and was converted into coproporphyrinogen more quickly than its series-I isomer. 2. The difference between uroporphyrinogens I and III as substrates was confirmed by using a mixture of [14C8]uroporphyrinogens, the discrimination occurring principally in the first decarboxylation. 3. Porphyrins, especially oxidation products of the substrates, inhibited the enzyme. Heptacarboxyporphyrin III was the most effective inhibitor of both uroporphyrinogen III and heptacarboxyporphyrinogen III conversion into coproporphyrinogen. 4. Rapid analysis of the livers from rats made porphyric with hexachlorobenzene demonstrated that substantial quantities of the tetrapyrroles were present in vivo as the porphyrinogens (21-42%). 5. Enzymic decarboxylation of uroporphyrinogen III in 2H2O-containing buffer gave [2H4]coproporphyrinogen. 6. Rats treated with cycloheximide for 10h showed no decrease in uroporphyrinogen decarboxylase activity/mg of protein, suggesting a relatively slow turnover of the enzyme.  相似文献   

11.
J G Straka  J P Kushner 《Biochemistry》1983,22(20):4664-4672
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified to homogeneity from bovine liver by using isoelectric and salt precipitations, followed by chromatography on DEAE-cellulose, phenyl-Sepharose, hydroxylapatite, and Sephacryl S-200. The purified enzyme is a monomer with an Mr approximately 57 000 and an isoelectric point at pH 4.6. Enzyme activity is optimal in buffers having an ionic strength of approximately 0.1 M and a pH of 6.8. The purified enzyme has a specific activity (expressed as the disappearance of uroporphyrinogen I) of 936 nmol X h-1 X (mg of protein)-1. The purified enzyme catalyzes all four decarboxylation reactions in the conversion of uroporphyrinogen I or III to the corresponding coproporphyrinogen. The rate-limiting step in the physiologically significant conversion of uroporphyrinogen III to coproporphyrinogen III is the decarboxylation of heptacarboxylate III. Kinetic data suggest that the enzyme has at least two noninteracting active sites. At least one sulfhydryl group is required for catalytic activity. The enzyme is inhibited by sulfhydryl-specific reagents and by divalent metal ions including Fe2+, Co2+, Cu2+, Zn2+, and Pb2+. The pattern of accumulation of intermediate (hepta-, hexa-, and pentacarboxylate porphyrinogens) and final (coproporphyrinogen) decarboxylation products is affected by the ratio of substrate (uroporphyrinogen I or III) concentration to enzyme concentration. Under physiologic conditions where the uroporphyrinogen to enzyme ratio is low, the substrate is nearly quantitatively decarboxylated, and the major product is coproporphyrinogen. If the ratio of uroporphyrinogen to enzyme is high, intermediates accumulate, and heptacarboxylate porphyrinogen becomes the major decarboxylation product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (alphabeta)4 to three-quarter-barrel structures (alphabeta)6 to full-barrel structures (alphabeta)8. It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (alphabeta)8 TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins.  相似文献   

13.
M D Ballinger  P A Frey  G H Reed 《Biochemistry》1992,31(44):10782-10789
Electron paramagnetic resonance (EPR) spectroscopy has been used to characterize an organic radical that appears in the steady state of the reaction catalyzed by lysine 2,3-aminomutase from Clostridium SB4. Results of a previous electron paramagnetic resonance (EPR) study [Ballinger, M. D., Reed, G. H., & Frey, P. A. (1992) Biochemistry 31, 949-953] demonstrated the presence of EPR signals from an organic radical in reaction mixtures of the enzyme. The materialization of these signals depended upon the presence of the enzyme, all of its cofactors, and the substrate, lysine. Changes in the EPR spectrum in response to deuteration in the substrate implicated the carbon skeleton of lysine as host for the radical center. This radical has been further characterized by EPR measurements on samples with isotopically substituted forms of lysine and by analysis of the hyperfine splittings in resolution-enhanced spectra by computer simulations. Changes in the hyperfine splitting patterns in EPR spectra from samples with [2-2H]lysine and [2-13C]-lysine show that the paramagnetic species is a pi-radical with the unpaired spin localized primarily in a p orbital on C2 of beta-lysine. In the EPR spectrum of this radical, the alpha-proton, the beta-nitrogen, and the beta-proton are responsible for the hyperfine structure. Analysis of spectra for reactions initiated with L-lysine, [3,3,4,4,5,5,6,6-2H8]lysine, [2-2H]lysine, perdeuteriolysine, [alpha-15N]lysine, and [alpha-15N,2-2H]lysine permit a self-consistent assignment of hyperfine splittings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.  相似文献   

16.
Porphyrinogens with modified propionate side chains bearing methyl substituents were found to be modest substrates for coproporphyrinogen oxidase; the results indicate that alteration of the substituents involved in secondary binding interactions has a comparable affect to modifying the side chain that undergoes degradation at the catalytic site.  相似文献   

17.
18.
The gamma-radiation-induced free radicals in single crystals of glutaric acid and glutaric-2,2,4,4-d4 acid were studied in the temperature range 77-300 K by e.s.r. techniques. At 77 K the decarboxylation radical and the anion are stabilized. At higher temperatures the decarboxylation radical is found to be converted into a hydrogen abstraction radical with an activation energy of 6.3 +/- 0.5 kcal/mole for the non-deuterated crystal. This radical is stable at room temperature. The anion seems be be converted to an unidentified intermediate radical which in turn is converted to the gamma-acyl radical. An analysis of the g-value anisotropy and of the 13C hyperfine splitting variation for this radical in the deuterated crystal is consistent with the assigned radical structure. By heat treatment the alpha-acyl radical is converted to another form of the hydrogen abstraction radical with an activation energy of 9.6 +/- 0.6 kcal/mole in the deuterated crystal. U.V.-light (gamma = 254 nm) transforms one of the room temperature radicals into the other.  相似文献   

19.
Tang KH  Chang CH  Frey PA 《Biochemistry》2001,40(17):5190-5199
The lysine 5,6-aminomutase (5,6-LAM) purified from Clostridium sticklandii was found to undergo rapid inactivation in the absence of the activating enzyme E(2) and ATP. In the presence of substrate, inactivation was also seen for the recombinant 5,6-LAM. This adenosylcobalamin-dependent enzyme is postulated to generate cob(II)alamin and the 5'-deoxyadenosyl radical through enzyme-induced homolytic scission of the Co-C bond. However, the products cob(III)alamin and 5'-deoxyadenosine were observed upon inactivation of 5,6-LAM. Cob(III)alamin production, as monitored by the increase in A(358), proceeds at the same rate as the loss of enzyme activity, suggesting that the activity loss is related to the adventitious generation of cob(III)alamin during enzymatic turnover. The cleavage of adenosylcobalamin to cob(III)alamin is accompanied by the formation of 5'-deoxyadenosine at the same rate, and the generation of cob(III)alamin proceeds at the same rate both aerobically and anaerobically. Suicide inactivation requires the presence of substrate, adenosylcobalamin, and PLP. We have ruled out the involvement of either the putative 5'-deoxyadenosyl radical or dioxygen in suicide inactivation. We have shown that one or more reaction intermediates derived from the substrate or/and the product, presumably a radical, participate in suicide inactivation of 5,6-LAM through electron transfer from cob(II)alamin. Moreover, L-lysine is found to be a slowly reacting substrate, and it induces inactivation at a rate similar to that of D-lysine. The alternative substrate beta-lysine induces inactivation at least 25 times faster than DL-lysine. The inactivation mechanism is compatible with the radical isomerization mechanism proposed to explain the action of 5,6-LAM.  相似文献   

20.
V Bandarian  R R Poyner  G H Reed 《Biochemistry》1999,38(38):12403-12407
The early steps in the single turnover inactivation of ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium by hydroxyethylhydrazine (HEH) have been probed by rapid-mixing sampling techniques, and the destiny of deuterium atoms, present initially in HEH, has been investigated by mass spectrometry. The inactivation reaction produces acetaldehyde, the hydrazine cation radical, 5'-deoxyadenosine, and cob(II)alamin (B(12r)) in amounts stoichiometric with active sites. Rapid-mix freeze-quench EPR spectroscopy and stopped-flow rapid-scan spectrophotometry revealed that the hydrazine cation radical and B(12r) appeared at a rate of approximately 3 s(-)(1) at 21 degrees C. Analysis of 5'-deoxyadenosine isolated from a reaction mixture prepared in (2)H(2)O did not contain deuterium-a result which demonstrates that solvent-exchangeable sites are not involved in the hydrogen-transfer processes. In contrast, all of the 5'-deoxyadenosine, isolated from inactivation reactions with [1,1,2,2-(2)H(4)]HEH, had acquired at least one (2)H from the labeled inactivator. Significant fractions of the 5'-deoxyadenosine acquired two and three deuteriums. These results indicate that hydrogen abstraction from HEH by a radical derived from the cofactor is reversible. The distribution of 5'-deoxyadenosine with one, two, and three deuteriums incorporated and the absence of unlabeled 5'-deoxyadenosine in the product are consistent with a model in which there is direct transfer of hydrogens between the inactivator and the 5'-methyl of 5'-deoxyadenosine. These results reinforce the concept that the 5'-deoxyadenosyl radical is the species that abstracts hydrogen atoms from the substrate in EAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号