首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The tunneling transfer of electrons between two sites, appropriate to biological intermolecular electron transfer, contains physical considerations which are not important in the tunneling transfer between two metals. Analyses (such as the recent one by Hales) based on the well-known formula for the latter but applied to the former case are quantitatively and qualitatively misleading.  相似文献   

2.
3.
We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum.  相似文献   

4.
The fluorescence from a set of porphyrin-calixarene complexes is quenched upon addition of benzo-1,4-quinone (BQ) in fluid solution. In N,N-dimethylformamide solution, fluorescence quenching involves both static and dynamic interactions but there are no obvious differences between porphyrins with or without the appended calixarene. Under such conditions, the static quenching behaviour is attributed to pi-complexation between the reactants and it is concluded that the calixarene cavity does not bind BQ. An additional static component is apparent in dichloromethane solution. This latter effect involves partial fluorescence quenching, for which the intramolecular rate constant can be obtained by time-resolved fluorescence spectroscopy. The derived rate constants depend on molecular structure in a manner consistent with fluorescence quenching being due to electron transfer. In all cases, however, the dominant quenching step involves diffusional contact between the porphyrin nucleus and a non-bound molecule of BQ.  相似文献   

5.
6.
Davidson VL 《Biochemistry》2002,41(50):14633-14636
Long-range protein electron transfer [ET] reactions may be relatively slow because of long ET distance and low driving force. It is possible to dramatically increase the rate of such nonadiabatic reactions by using an adiabatic chemical reaction to activate the system for rapid ET. Three such examples are discussed; nitrogenase, pyruvate:ferredoxin oxidoreductase, and the methylamine dehydrogenase-amicyanin complex. In each example, the faster activated ET reaction is gated (i.e., rate-limited) by the chemical reaction. However, the reaction rate is still orders of magnitude greater than that of the ungated true ET reaction in the absence of chemical activation. Models are presented to describe the mechanisms of activation in the context of ET theory, and the relevance of such chemically gated ET to the regulation of metabolism is discussed.  相似文献   

7.
The concept of proteins as ‘conducting glassees’ rather than ‘conducting pathways’ is reviewed in the light of recent experimental evidence on biological electron-transfer rates and their dependence on driving force, reorganization energy, and the distance and coupling between partners. The dependence of midpoint potential and reorganization energy on protein dielectric properties is also reviewed.  相似文献   

8.
Many oxidoreductases are constructed from (a) local sites of strongly coupled substrate-redox cofactor partners participating in exchange of electron pairs, (b) electron pair/single electron transducing redox centers, and (c) nonadiabatic, long-distance, single-electron tunneling between weakly coupled redox centers. The latter is the subject of an expanding experimental program that seeks to manipulate, test, and apply the parameters of theory. New results from the photosynthetic reaction center protein confirm that the electronic-tunneling medium appears relatively homogeneous, with any variances evident having no impact on function, and that control of intraprotein rates and directional specificity rests on a combination of distance, free energy, and reorganization energy. Interprotein electron transfer between cytochromec and the reaction center and in lactate dehydrogenase, a typical oxidoreductase from yeast, are examined. Rates of interprotein electron transfer appear to follow intraprotein guidelines with the added essential provision of binding forces to bring the cofactors of the reacting proteins into proximity.  相似文献   

9.
DNA-mediated electron transfer   总被引:1,自引:0,他引:1  
 Electron transfer in DNA has been investigated for decades, but recent experiments highlight our limited fundamental understanding of these processes. Modern electron transfer theory may help to address some of the open mechanistic issues. We summarize and analyze the results of recent experiments from a theoretical perspective. Future research directions are suggested that might help to establish the molecular mechanism(s) for long-range DNA electron transfer. Received, accepted: 5 January 1998  相似文献   

10.
The many observations of long range electron transfer in proteins raises the question of whether a protein's structure can influence the rate or path of such transfers, and if so, then how. To answer these questions requires information on which of the various structural elements composing proteins support long range electron transfer. In this report, we present evidence for long range electron transfer along the alpha-helix of a synthetic leucine zipper dimer. We also present electron transfer rate data obtained with other helical peptides.  相似文献   

11.
Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzyme that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 A apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.  相似文献   

12.
13.
To specify electron exchanges involving Desulfovibrio desulfuricans Norway tetra-heme cytochrome c3, the chemical modification of arginine 73 residue, was performed. Biochemical and biophysical studies have shown that the modified cytochrome retains its ability to both interact and act as an electron carrier with its redox partners, ferredoxin and hydrogenase. Moreover, the chemical modification effects on the cytochrome c3 1H NMR spectrum were similar to that induced by the presence of ferredoxin. This suggests that arginine 73 is localized on the cytochrome c3 ferredoxin interacting site. The identification of heme 4, the closest heme to arginine 73, as the ferredoxin interacting heme helps us to hypothesize about the role of the three other hemes in the molecule. A structural hypothesis for an intramolecular electron transfer pathway, involving hemes 4, 3 and 1, is proposed on the basis of the crystal structures of D. vulgaris Miyazaki and D. desulfuricans Norway cytochromes c3. The unique role of some structural features (alpha helix, aromatic residues) intervening between the heme groups, is proposed.  相似文献   

14.
pH Dependences of steady-state kinetic parameters of cytochrome chains of submitochondrial particles have been studies. It has been shown that the lifetimes of activated states (tau) of the pairs of cytochromes b leads to c1 and a leads to a3 have different pH dependences; those for the c1 leads to c and c leads to a cytochrome pairs being similar. The rate constants for the non-activated state of the respiratory chains decreased for the b leads to c1 pair and increased for the a leads to a3 pair when the pH value was increased. The values of pK calculated from these dependences for the pairs b leads to c1 and a leads to a3 were 7.2 and 8.9, respectively. It has been supposed that the ratio of activated to non-activated electron carriers may be controlled by the local pH value in the mitochondrial membrane, the latter being dependent upon the rate of electron transfer. The kinetic model based on this assumption allows one to explain the experimental dependences on pH of the rate constants for cytochromes b leads to c, and a leads to a3. The values of the diffusion rate constants for H+ and OH- ions in the mitochondrial membrane estimated from these kinetic data obtained in this study were 10(4)--10(5) s-1 and 10(2)--10(3) s-1, respectively.  相似文献   

15.
Mechanisms responsible for the transfer of electrons through mitochondrial and photosynthetic electron transport chains are considered. Mechanisms considered include diffusion, ligand-mediated transfer, tunneling and semiconduction. Perturbations which create satisfactory conditions for electron transfer are also considered. There is a brief discussion of the electron transport chain environment and constituents. Sponsored in part by a grant from the Department of Health, Education, and Welfare (Public Health Service Grant Number 5 R01 RL00480)  相似文献   

16.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.  相似文献   

17.
Biochemical reactions involving electron transfer between substrates or enzyme cofactors are both common and physiologically important; they have been studied by means of a variety of techniques. In this paper we review the application of photochemical methods to the study of intramolecular electron transfer in hemoproteins, thus selecting a small, well-defined sector of this otherwise enormous field. Photoexcitation of the heme populates short-lived excited states which decay by thermal conversion and do not usually transfer electrons, even when a suitable electron acceptor is readily available, e.g., in the form of a second oxidized heme group in the same protein; because of this, the experimental setup demands some manipulation of the hemoprotein. In this paper we review three approaches that have been studied in detail: (i) the covalent conjugation to the protein moiety of an organic ruthenium complex, which serves as the photoexcitable electron donor (in this case the heme acts as the electron acceptor); (ii) the replacement of the heme group with a phosphorescent metal-substituted porphyrin, which on photoexcitation populates long-lived excited states, capable of acting as electron donors (clearly the protein must contain some other cofactor acting as the electron acceptor, most often a second heme group in the oxidized state); (iii) the combination of the reduced heme with CO (the photochemical breakdown of the iron-CO bond yields transiently the ground-state reduced heme which is able to transfer one electron (or a fraction of it) to an oxidized electron acceptor in the protein; this method uses a "mixed-valence hybrid" state of the redox active hemoprotein and has the great advantage of populating on photoexcitation an electron donor at physiological redox potential).  相似文献   

18.
Electron-transfer flavoprotein (ETF) serves as an intermediate electron carrier between primary flavoprotein dehydrogenases and terminal respiratory chains in mitochondria and prokaryotic cells. The three-dimensional structures of human and Paracoccus denitrificans ETFs determined by X-ray crystallography indicate that the 4'-hydroxyl of the ribityl side chain of FAD is hydrogen bonded to N(1) of the flavin ring. We have substituted 4'-deoxy-FAD for the native FAD and investigated the analog-containing ETF to determine the role of this rare intra-cofactor hydrogen bond. The binding constants for 4'-deoxy-FAD and FAD with the apoprotein are very similar, and the energy of binding differs by only 2 kJ/mol. The overall two-electron oxidation-reduction potential of 4'-deoxy-FAD in solution is identical to that of FAD. However, the potential of the oxidized/semiquinone couple of the ETF containing 4'-deoxy-FAD is 0.116 V less than the oxidized/semiquinone couple of the native protein. These data suggest that the 4'-hydoxyl-N(1) hydrogen bond stabilizes the anionic semiquinone in which negative charge is delocalized over the N(1)-C(2)O region. Transfer of the second electron to 4'-deoxy-FAD reconstituted ETF is extremely slow, and it was very difficult to achieve complete reduction of the flavin semiquinone to the hydroquinone. The turnover of medium chain acyl-CoA dehydrogenase with native ETF and ETF containing the 4'-deoxy analogue was essentially identical when the reduced ETF was recycled by reduction of 2,6-dichlorophenolindophenol. However, the steady-state turnover of the dehydrogenase with 4'-deoxy-FAD was only 23% of the turnover with native ETF when ETF semiquinone formation was assayed directly under anaerobic conditions. This is consistent with the decreased potential of the oxidized semiquinone couple of the analog-containing ETF. ETF containing 4'-deoxy-FAD neither donates to nor accepts electrons from electron-transfer flavoprotein ubiquinone oxidoreductase (ETF-QO) at significant rates (相似文献   

19.
Photoremovable protecting groups (also known as photolabile protecting groups, phototriggers, or caged molecules) are functional groups that are attached to a molecule in such a way as to render the latter inactive. Exposure to light releases the protecting group, restoring functionality to the molecule. The use of photoremovable protecting groups (PRPGs) allows for precise spatial and temporal control of chemical reactions. Such groups have found use in many diverse applications, ranging from time resolved studies of physiological processes, to fabrication of spatially resolved combinatorial libraries of DNA. Recent research efforts have focused on designing protecting groups that are removed through photoinduced electron transfer (PET), rather than by direct photolysis. The PET strategy allows the light absorption step to be decoupled from the bond breaking step, thus permitting more control over the wavelengths of light used in the release process. The application of these types of protecting groups to the photochemical release of amines, alcohols, ketones, and carboxylic acids is described.  相似文献   

20.
Electron transfer between the redox centres is essential for the function of the haem-copper oxidases. To date, the fastest rate of electron transfer between the haem groups has been determined to be ca. 3 x 10(5) s(-1). Here, we show by optical spectroscopy that about one half of this electron transfer actually occurs at least three orders of magnitude faster, after photolysis of carbon monoxide from the half-reduced bovine heart enzyme. We ascribe this to the true haem-haem electron tunnelling rate between the haem groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号