首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have produced three antitoxins consisting of the variable domains of camelid heavy chain‐only antibodies (VHH) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen‐binding proteins and the heterodimer fusion protein containing two VHH domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin‐producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism.  相似文献   

3.
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.  相似文献   

4.
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.  相似文献   

5.

Background

Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.

Methodology/Principal Findings

Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.

Conclusions/Significance

Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.  相似文献   

6.
Concern about the malicious applications of botulinum neurotoxin has highlighted the need for a new generation of safe and highly potent antitoxins. In this study, we developed and evaluated the preclinical pharmacology and safety of a new F(ab′)2 antitoxin against botulinum neurotoxin serotype A (BoNT/A). As an alternative to formalin-inactivated toxoid, the recombinant Hc domain of botulinum neurotoxin serotype A (rAHc) was used to immunize horses, and the IgGs from the hyperimmune sera were digested to obtain F(ab′)2 antitoxin. The protective effect of the new F(ab′)2 antitoxin against BoNT/A was determined both in vitro and in vivo. The results showed that the F(ab′)2 antitoxin could prevent botulism in mice challenged with BoNT/A and effectively delayed progression of paralysis from botulism in the therapeutic setting. The preclinical safety of the new F(ab′)2 antitoxin was also evaluated, and it showed neither harmful effects on vital functions nor adverse effects such as acute toxicity, or immunological reactions in mice and dogs. Thus, our results provide valuable experimental data for this new antitoxin as a potential candidate for treatment of botulism caused by BoNT/A, and our findings support the safety of the new F(ab′)2 antitoxin for clinical use. Our study further demonstrates the proof of concept for development of a similar strategy for obtaining potent antitoxin against other BoNT serotypes.  相似文献   

7.
Ingestion of botulinum neurotoxin (BoNT) results in botulism, a severe and frequent fatal disease known in the world. Current treatments rely on antitoxins, such as equine antitoxin and human botulism immunoglobulin. In some cases, side effects have been reported, including early anaphylactic shock and late serum sickness. Thus, diagnosis and treatment measure of BoNT are necessary and crucial. In the present study, a single-domain variable heavy-chain (VHH) antibody fragment was obtained from an immune dromedary phage display library against the putative binding domain of botulinum neurotoxin E (BoNT/E), a non-toxic 50-kDa fragment. The characteristics of nanobody VHH include excellent production, superior heat stability and specific binding capacity to soluble antigen without cross-reaction to other relevant or irrelevant antigens. A total of 150 ng/Kg of nanobody entirely neutralized 3LD50 of the BoNT/E in an in vivo challenge of the mice. This phenomenon indicates BoNT/E toxin neutralizing capacity of the produced nanobody. These results also suggest possession of unique properties by the nanobody applicable in diagnostics or therapeutic purposes.  相似文献   

8.
Botulinum neurotoxin (BoNT), the most poisonous substance known, causes naturally occurring human disease (botulism) and is one of the top six biothreat agents. Botulism is treated with polyclonal antibodies produced in horses that are associated with a high incidence of systemic reactions. Human monoclonal antibodies (mAbs) are under development as a safer therapy. Identifying neutralizing epitopes on BoNTs is an important step in generating neutralizing mAbs, and has implications for vaccine development. Here, we show that the three domains of BoNT serotype A (BoNT/A) can be displayed on the surface of yeast and used to epitope map six mAbs to the toxin domains they bind. The use of yeast obviates the need to express and purify each domain, and it should prove possible to display domains of other BoNT subtypes and serotypes for epitope mapping. Using a library of yeast-displayed BoNT/A binding domain (H(C)) mutants and selecting for loss of binding, the fine epitopes of three neutralizing BoNT/A mAbs were identified. Two mAbs bind the C-terminal subdomain of H(C), with one binding near the toxin sialoganglioside binding site. The most potently neutralizing mAb binds the N-terminal subdomain of H(C), in an area not previously thought to be functionally important. Modeling the epitopes shows how all three mAbs could bind BoNT/A simultaneously and may explain, in part, the dramatic synergy observed on in vivo toxin neutralization when these antibodies are combined. The results demonstrate how yeast display can be used for domain-level and fine mapping of conformational BoNT antibody epitopes and the mapping results identify three neutralizing BoNT/A epitopes.  相似文献   

9.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.  相似文献   

10.
Botulinum neurotoxins (BoNTs) cause botulism by cleaving proteins necessary for nerve transmission. There are seven serotypes of BoNT, A-G, characterized by their response to antisera. Many serotypes are further distinguished into differing subtypes based on amino acid sequence, some of which result in functional differences. Our laboratory previously reported that all tested subtypes within each serotype have the same site of enzymatic activity. Recently, three new subtypes of BoNT/F; /F3, /F4, and /F5, were reported. Here, we report that BoNT/F5 cleaves substrate synaptobrevin-2 in a different location than the other BoNT/F subtypes, between (54)L and (55)E. This is the first report of cleavage of synaptobrevin-2 in this location.  相似文献   

11.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.  相似文献   

12.
Botulism due to type F botulinum neurotoxin (BoNT/F) is rare (<1% of cases), and only a limited number of clostridial strains producing this toxin type have been isolated. As a result, analysis of the diversity of genes encoding BoNT/F has been challenging. In this study, the entire bont/F nucleotide sequences were determined from 33 type F botulinum toxin-producing clostridial strains isolated from environmental sources and botulism outbreak investigations. We examined proteolytic and nonproteolytic Clostridium botulinum type F strains, bivalent strains, including Bf and Af, and Clostridium baratii type F strains. Phylogenetic analysis revealed that the bont/F genes examined formed 7 subtypes (F1 to F7) and that the nucleotide sequence identities of these subtypes differed by up to 25%. The genes from proteolytic (group I) C. botulinum strains formed subtypes F1 through F5, while the genes from nonproteolytic (group II) C. botulinum strains formed subtype F6. Subtype F7 was composed exclusively of bont/F genes from C. baratii strains. The region of the bont/F5 gene encoding the neurotoxin light chain was found to be highly divergent compared to the other subtypes. Although the bont/F5 nucleotide sequences were found to be identical in strains harboring this gene, the gene located directly upstream (ntnh/F) demonstrated sequence variation among representative strains of this subtype. These results demonstrate that extensive nucleotide diversity exists among genes encoding type F neurotoxins from strains with different phylogenetic backgrounds and from various geographical sources.Botulism is a potentially fatal disease caused solely by the action of serologically distinct neurotoxins (BoNT/A, -B, -C, -D, -E, -F, or -G) which prevent acetylcholine release at neuromuscular junctions, resulting in paralysis. Food-borne botulism may result from the ingestion of a preformed toxin that is produced in inadequately preserved food. Under certain conditions, botulinum neurotoxin-producing Clostridium sp. may colonize and produce toxin in wounds (wound botulism) or in the intestine (infant botulism or adult colonization). Globally, human botulism cases are associated with botulinum neurotoxin serotypes A, B, E, and rarely F. The Centers for Disease Control and Prevention (CDC) maintains active surveillance for botulism cases in the United States. Of 1,269 U.S. cases of botulism reported to the CDC between 1981 and 2002, approximately 1% were due to type F toxin (13). An additional 10 cases of type F botulism were reported to the CDC from 2003 to 2007 (http://www.cdc.gov/nationalsurveillance/botulism_surveillance.html).Type F botulism was first described in 1960 following an outbreak occurring in Denmark involving liver paste (30). The organism isolated in this outbreak metabolically resembled proteolytic Clostridium botulinum strains of types A and B. In a subsequent outbreak, type F toxin was found to be produced by a nonproteolytic C. botulinum strain isolated from venison jerky (29). Bivalent toxin-producing strains have been described, including Bf strains isolated from infants in the United States and England (1, 16, 17, 35) and an Af strain isolated from individuals in Argentina with food-borne botulism (11). Bivalent strains may produce higher titers of one toxin type, which are denoted with a capital letter. The only reported organism isolated from infants with botulism due to type F toxin alone (i.e., not associated with additional serotypes as in bivalent strains) is Clostridium baratii (2, 14, 24). In addition, C. baratii type F has been isolated from adults with botulism (28) as well as suspect foods associated with botulism cases (15; CDC, unpublished data).Botulinum neurotoxin genes (bont) are typically found within toxin gene clusters that include other genes encoding components of the toxin complex (ha70, ha17, ha33, ntnh), regulatory proteins (botR), or proteins with unknown functions (p47, orfX1, orfX2, orfX3). Two general toxin gene cluster arrangements have been described, including the orfX cluster (orfX3-orfX2-orfX1-botR-p47-ntnh-bont) and the ha cluster (ha70-ha17-ha33-botR-ntnh-bont) (21, 22). The bont/F genes of type F and type Bf strains examined by Hill et al. (21) were found in an orfX cluster.The amino acid sequence identities of the BoNT serotypes A to G range from approximately 35 to 70% (36). In addition, within nearly all toxin serotypes, various levels of amino acid sequence variation have been observed, resulting in the identification of toxin subtypes (20, 36, 37).Although a limited number of genes encoding type F botulinum neurotoxin have been sequenced, a comparison of sequences available in public databases indicates that significant diversity exists within this serotype. The nucleotide sequence identity of the type F neurotoxin gene from the proteolytic strain Langeland differs from that of the gene in the nonproteolytic strain 202F by 7%. The type F gene from C. baratii strain ATCC 43756 differs from those of Langeland and 202F by 18% and 20%, respectively. Although the bivalent (Bf) strain CDC3281 is phenotypically proteolytic, the toxin gene shows greater similarity to those from nonproteolytic strains (34). In addition to metabolic differences observed between proteolytic and nonproteolytic C. botulinum strains as well as C. baratii, these organisms are phylogenetically distinct based on differences among their 16S rRNA sequences (5, 20).In order to define the degree of genetic diversity among strains encoding botulinum neurotoxin type F, we sequenced the bont/F gene and partially characterized the toxin gene cluster by using a panel of 33 strains with diverse origins. These strains were selected from those available in the CDC culture collection as well as several isolated in Argentina. The only reported Af strains have been isolated in Argentina. Among 68 outbreaks of serotype-confirmed food-borne botulism in Argentina between 1922 and 2007, type F was isolated in two outbreaks, and type Af was isolated in one outbreak. In addition, Lúquez et al. (26) reported isolation of type F and Af strains from Argentine soils.Here, we report that analysis of the bont/F genes from the strains examined in this study revealed a high degree of nucleotide sequence heterogeneity and the identification of seven type F subtypes (F1 to F7). In addition, the nucleotide sequence of one subtype (F5) has not been previously reported and contains evidence of recombination compared to the other subtypes.  相似文献   

13.
Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.  相似文献   

14.
Botulism is a rare, life-threatening paralytic disease of both humans and animals that is caused by botulinum neurotoxins (BoNT). Botulism is confirmed in the laboratory by the detection of BoNT in clinical specimens, contaminated foods, and cultures. Despite efforts to develop an in vitro method for botulinum toxin detection, the mouse bioassay remains the standard test for laboratory confirmation of this disease. In this study, we evaluated the use of a nonlethal mouse toe-spread reflex model to detect BoNT spiked into buffer, serum, and milk samples. Samples spiked with toxin serotype A and nontoxin control samples were injected into the left and right extensor digitorum longus muscles, respectively. Digital photographs at 0,8, and 24 h were used to obtain objective measurements through effective paralysis scores, which were determined by comparing the width-to-length ratio between right and left feet. Both objective measurements and clinical observation could accurately identify over 80% of animals injected with 1 LD(50) (4.3 pg) BoNT type A within 24 h. Half of animals injected with 0.5 LD(50) BoNT type A and none injected with 0.25 LD(50) demonstrated localized paralysis. Preincubating the toxin with antitoxin prevented the development of positive effective paralysis scores, demonstrating that (1) the effect was specific for BoNT and (2) identification of toxin serotype could be achieved by using this method. These results suggest that the mouse toe-spread reflex model may be a more humane alternative to the current mouse bioassay for laboratory investigations of botulism.  相似文献   

15.
Clostridium botulinum produces the most potent known toxins, with seven distinct serotypes currently defined (A-G). These toxins can cause a life threatening systemic toxicity whether through natural causes such as food poisoning, infant botulism, wound botulism, or through use as bio-terror agents (e.g. inhalational botulism). It was realised early on that standard reference botulinum antitoxins were required to reduce the variation between assays and ensure a consistent potency of therapeutic antitoxins and vaccines, and to define the serotype. This led to the International Unit being defined by the World Health Organisation (WHO) in the 1960s with the establishment of the first International Standards (IS) for serotypes A-F. Since then botulinum antitoxin ISs have been used world wide as the 'yard stick' to measure the neutralising potency of antitoxins. These primary WHO ISs are used to calibrate in house working reagents that are more extensively utilised. A definition of the International Unit for serotype G antitoxin has yet to be defined or accepted by the WHO and urgently needs addressing. However, before September 11th 2001 there was very little interest in botulinum antitoxin IS and as a result stocks of most of the original preparations are now completely exhausted or depleted and replacements long overdue. We have reviewed the extensive history and availability of the primary WHO ISs and interim materials. All type A and B antitoxin materials were recently assayed and their relative activities confirmed against the original IS preparations. The recent increase in demand for these materials has further exacerbated the shortage. We describe here the production and characterization of stable freeze dried potential candidate replacements along with a new prospective first IS for type G antitoxin. Available toxin A reference preparations are also briefly reviewed.  相似文献   

16.
《MABS-AUSTIN》2013,5(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

17.
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

18.
Botulinum neurotoxin (BoNT) is a category A toxin that has been classified within seven serotypes, designated A-G. Recently, it has been discovered that sequence variability occurs in BoNTs produced by serotype A (BoNT/A) variant strains, designated as subtypes A1 and A2, which have significantly different antibody-binding properties. We have therefore made efforts to understand at the molecular level the diversity and its effects on the biological actions of the toxin, including receptor binding, substrate recognition, and catalysis. We provide the results of these studies, including the analysis of two newly sequenced BoNT/A variants, Loch Maree (A3) and 657Ba (A4), and their comparison to A1 and A2. Using sequence analysis, available functional data, molecular modeling, and comparison of models with the crystal structures of BoNT/A1 and the light chain of BoNT/A2, we conclude that these sequence differences within subtypes will impact development of broad-spectrum antibody and small ligand therapeutics, and suggest dissimilarities in binding affinity and cleavage efficiency of the SNAP-25 substrate. In particular, sequence variation in subtypes BoNT/A3 and BoNT/A4 will likely effect alpha-exosite and S1' subsite recognition, respectively.  相似文献   

19.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A–G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay.  相似文献   

20.
Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences, which suggest that they may be well tolerated in potential clinical development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号