首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precambrian organic-walled microfossils (OWMs) are primarily preserved in mudstones and shales that are low in total organic carbon (TOC). Recent work suggests that high TOC may hinder OWM preservation, perhaps because it interferes with chemical interactions involving certain clay minerals that inhibit the decay of microorganisms. To test if clay mineralogy controls OWM preservation, and if TOC moderates the effect of clay minerals, we compared OWM preservational quality (measured by pitting on fossil surfaces and the deterioration of wall margins) to TOC, total clay, and specific clay mineral concentrations in 78 shale samples from 11 lithologic units ranging in age from ca. 1650 to 650 million years ago. We found that the probability of finding well-preserved microfossils positively correlates with total clay concentrations and confirmed that it negatively correlates with TOC concentrations. However, we found no evidence that TOC influences the effect of clay mineral concentrations on OWM preservation, supporting an independent role of both factors on preservation. Within the total clay fraction, well-preserved microfossils are more likely to occur in shales with high illite concentrations and low berthierine/chamosite concentrations; however, the magnitude of their effect on preservation is small. Therefore, there is little evidence that bulk clay chemistry is important in OWM preservation. Instead, we propose that OWM preservation is largely regulated by physical properties that isolate organic remains from microbial degradation such as food scarcity (low TOC) and low sediment permeability (high total clay content): low TOC increases the diffusive distances between potential carbon sources and heterotrophic microbes (or their degradative enzymes), while high clay concentrations reduce sediment pore space, thereby limiting the diffusion of oxidants and degradative enzymes to the sites of decay.  相似文献   

2.
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred.  相似文献   

3.
A study of the development of methanogenic fixed films on pieces of polyvinyl chloride plastic, etched glass and baked clay showed that support material markedly affected the rate of attachment and growth of bacteria converting acetic acid to methane. Film development, as indicated by the rate of acetate conversion to methane and carbon dioxide, was threefold faster on fired clay than on either PVC plastic or etched glass. Scanning electron micrographs showed that the film of bacteria attached to clay was thick and uniform, while the film attached to PVC plastic was thin although still uniform. Attachment to etched glass was spotty. The characteristics of clay which made it a superior support appeared to be its rough, porous surface which offered attachment sites to the micro-organisms and the presence of minerals in the clay, particularly iron which is known to stimulate methanogenesis and growth.  相似文献   

4.
The startup of anaerobic fluidized bed reactors, which use Manville R-633 beads as the growth support media, acetate enriched bacterial culture as the inoculum, and acetic acid as the sole substrate, is studied. Tow startup strategies are evaluated: one based on maximum and stable substrate utilization and another based on maximum substrate loading controlled by reactor pH. The startup process is characterized using a number of operational parameters.The reactors again excellent total organic carbon (TOC) removal (i.e., > 97% at a feed concentration of 5000 mg TOC/L) and stable methane production (i.e., 0.90 L CH(4)/g TOC, where TOC(r) is TOC removed) at a early stage of the startup process, regardless of the strategies applied. The loading can be increased rapidly without the danger of being overloaded. Significant losses of growth support media and biomass caused by gas effervescence at higher loadings limits the maximum loading that can be safely applied during startup process.A high reactor immobilized biomass inventory is achievable using the porous growth support media (e.g., Manville 633 beads). A rapid increase in loading creates a substrate rich environment that yields more viable reactor biomass. Both substrate utilization rate (batch and continuous) and immobilized biomass inventory stabilize concomitantly at the late stage of the startup process, indicating the attainment of steady-state conditions in reactors. Therefore, they are better parameters that TOC removal and methane production for characterizing the entire startup process of aerobic fluidized bed reactor.The strategy based on maximum substrate loading controlled by reactor pH significantly shortens the startup time. In this case, the reactor attains steady-state conditions approximately 140 days after startup. On the other hand, a startup time of 200 days is required when the strategy based maximum substrate utilization is adopted. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
A regime shift between a macrophyte-dominated clear state and a phytoplankton-dominated turbid state can have considerable impact on ecosystem structure and function of shallow lakes. However, very little is known about the response of the methanogenic archaeal community in the sediment during this regime shift. We investigated the methanogenic archaeal community at two sites in the large, shallow, eutrophic Taihu Lake over the course of one year. One site is located in Meiliang Bay and is dominated by Microcystis blooms, and the other site is located in East Taihu Bay and is dominated by aquatic macrophytes. Terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses of archaeal 16S rRNA genes were used to analyze the methanogenic community. Higher ratio of methanogens in Archaea was observed in East Taihu Bay than in Meiliang Bay. The methanogenic archaeal community was dominated by the Methanobacteriales and the LDS cluster in macrophytes-dominated East Taihu Bay, while it was dominated by the Methanosarcinaceae, Methanobacteriales, and the LDS cluster in Microcystis-dominated Meiliang Bay. Clustering analysis of all of the samples revealed differences in the composition of the methanogenic archaeal communities between the two sites that were independent of seasonal variations. Further statistical analysis indicated that the chlorophyll a (Chla) concentration had a profound impact on the composition of the methanogenic archaeal community in Meiliang Bay, whereas it was primarily influenced by total organic carbon (TOC) levels in East Taihu Bay. Overall, this investigation demonstrates that intra-habitat differences in the composition of methanogenic archaeal communities are likely driven by changes in the available organic materials.  相似文献   

6.
Lei X  Maekawa T 《Bioresource technology》2007,98(18):3521-3525
Electrochemical treatment of the anaerobic digestion effluents using a Ti/Pt-IrO(2) electrode was evaluated in this study. The effects of electric current, NaCl dosage, and initial pH on ammonia, nitrate, total organic carbon (TOC), inorganic carbon (IC), final pH, and turbidity variations were studied in a series of batch experiments. It was found that the electric current and NaCl dosage had a considerably larger effect on the oxidization of ammonia; this was less for the effect of the initial pH. In addition, electroflotation was the main mechanism for turbidity, TOC, and IC removals. Further, the IC removal was mainly affected by the pH of wastewater. The electrochemical treatment using Ti/Pt-IrO(2) electrode without pretreatment was feasible for the anaerobic digestion effluent.  相似文献   

7.
Improvement of biogas production was realized by covalent immobilization of a methanogenic consortium onto a granulated polymeric support [poly(acrylonitrile-acrylamide)]. The growth kinetics of the immobilized consortium was investigated during a process of vinasse methanation, and a cell concentration increase from 12.3 mg g(-1) support to 52.1 mg g(-1) support was established. The methane yield reached 0.33 m3 kg(-1) CODr, the maximum yield on chemical oxygen demand (COD) removal being 92%. The inhibitory effect of oxygen was reduced by immobilizing the methanogenic consortium.  相似文献   

8.
A methanogenic bacterium using H2 and CO2 as sole energy and carbon source has been isolated in pure culture from digested sludge. Its colonies on mineral agar are translucent, convex, circular with entire margins and yellow to brownish in colour. Cells are gram-positive, non motile and appear as straight cods, normally about 3 m long. A marked pleomorphism depending on the media was observed. The organism is chemolithoheterotrophic, has a pH optimum of 7.0 and an optimal temperature for growth of 33–40°C; no growth occurs above 45°C. The generation time at optimal conditions is less than 5 h. Cysteine must be supplied in the growth medium. It can act as sole sulfur source. The addition of sulfide accelerates the growth at an optimum concentration of 10-4 to 10-5 molar. A growth factor, not identical with SH-coenzyme M, occurring in anaerobic sewage sludge and yeast extract shows a stimulatory effect. 7.0–8.2% of the total carbon dioxide uptake is assimilated and 11.2% of the energy obtained from the reduction of carbon dioxide to methane is refound in the caloric value of the biomass. 0.01 ppm of dissolved oxygen completely inhibits growth and methane production. However, the bacteria do not loose their viability when exposed to high oxygen concentrations. Further informations are needed before this organism (DSM 744) is specifically identified.List of Abbreviations TOC total organic carbon - DOC dissolved organic carbon - POC particulate organic carbon  相似文献   

9.
不同粒径红壤胶体颗粒对DNA的吸附特性   总被引:1,自引:0,他引:1  
采用平衡法研究了含有机质粗粘粒、去有机质粗粘粒、含有机质细粘粒和去有机质细粘粒4种红壤胶粒对DNA的吸附特征及其热力学特性.结果表明: 4种红壤胶粒对DNA的吸附是快反应过程,Langmuir吸附方程可较好地描述4种红壤胶体对DNA的等温吸附,相应拟合的相关系数r2分别为0.974、0.991、0.958和0.975.最大吸附量表现为含有机质细粘粒>去有机质细粘粒>含有机质粗粘粒>去有机质粗粘粒.电解质浓度和种类及吸附体系pH是影响红壤胶体对DNA吸附的重要因子,一定电解质浓度范围(NaCl<60 mmol·L-1,CaCl2<10 mmol·L-1)内,DNA在红壤胶体表面的吸附量随电解质浓度的增大而显著增加,其中钙离子的促进作用大于钠离子,但随着吸附体系pH的上升而显著降低.含有机质胶粒对DNA的吸附过程是吸热反应,而去有机质胶粒对DNA的吸附过程是放热反应,红壤胶粒对DNA的吸附反应过程是一个熵增过程.  相似文献   

10.
The models of anoxic/methanogenic processes in biofilm reactors published until now have supposed that pH does not change between the bulk liquid and biofilm. These assumptions are not necessarily valid for processes in reactors with biofilms. The present work studied an anoxic/methanogenic biofilm reactor incorporating the pH variation in both bulk and biofilm. Two dynamic models, one including the calculation of pH throughout the biofilm, were solved numerically and compared with each other. The results showed that the inclusion of a pH algorithm calculation produces different profiles and efficiencies on an anoxic/methanogenic biofilm system. Values of C/N ratio higher than 20 mg TOC/mg NO3–N and values of HRT lower than 4.5 h produce differences of up to 46 % with a traditional model that does not include pH calculation inside the biofilm. Thus, the assumption of a constant pH within the biofilm when using the traditional model does not accurately describe the performance of the system under these conditions, and pH calculation inside the biofilm should be included.  相似文献   

11.
The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.  相似文献   

12.
The objective of this study was to assess the predictive performance of midDRIFTS-PLSR models in quantifying total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), hot water extractable carbon and nitrogen (CHWE, NHWE), pH, and the clay, silt, and sand content of soils. A total of 68 soil samples were taken across an agroecological region in southwest Iran, and analyzed in the laboratory using mid-DRIFTS-PLSR. midDRIFTS-PLSR calibration models were developed, and external validation was performed for each of the soil properties via an independent algorithm. The calibration and validation models allowed for a sufficient prediction of TC, TIC, and TOC with residual prediction deviations ≥3 and R2 values >0.9. The precise prediction ofcarbon fractions, such as TC, TIC, and TOC, in a rapid and inexpensive manner confirmed that midDRIFTS analysis was a rapid-throughput and cost-effective technique for monitoring soil carbon at the regional scale.  相似文献   

13.
A concept of methane yield at optimum pH was advanced and subsequently a mathematical model that simulates the optimal pH of a batch process for anaerobic digestion of organic fraction of municipal solid waste (MSW) was developed and validated. The model was developed on the basis of the microbial growth kinetics and was divided into three processes: hydrolysis of substrates by hydrolytic bacteria, consumption of soluble substrate by acidogenic bacteria, and finally consumption of acetate and methane generated by methanogenic bacteria. Material balance and liquid phase equilibrium chemistry were used in this study. A series of experiments were conducted to validate the model. The model simulation results agreed reasonably with experimental data in different temperatures and total solid (TS) concentrations under uncontrolled pH. A computer circulation program was used to predict the optimal pH in different conditions. Experiments in different temperatures and TS were run under optimal pH which predicted by the model. The model was succeeded in increasing the methane production and the cumulative methane production had an average increment about 35% in optimal pH of different temperatures and TS.  相似文献   

14.
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.  相似文献   

15.

Background

Composts with different feedstocks may have differential effects on soil properties and plant growth which, may be further modulated by soil texture.

Materials and methods

In a 77-day pot experiment in the glasshouse, we investigated the effect of a single application as mulch of six types of composts derived from different starting feedstocks in two soils (13% and 46% clay, referred to as S13 and S46) on soil physical, chemical and biological properties, plant growth and nutrient uptake. Composts were placed as 2.5?cm thick mulch layer on the soil surface and wheat plants were grown and harvested at 42?days and at 77?days (grain filling).

Results

Composts differed in total and available N and P and particle size with C1, C3, C4 and C5 being fine-textured, whereas C2 and C6 were coarse-textured. Compost addition as mulch increased soil total organic C and EC, but had no effect on pH. In all treatments, cumulative soil respiration was higher in S13 than in S46 and was increased by compost addition with the greatest increase with C2 and C6. Compared to the unamended soil, most compost mulches (except C2) increased macroaggregate stability. Compost mulches significantly increased available P and N in both soils, except for C2. Compost mulches increased available N up to 6-fold in both soils with the strongest increase by C5. Most composts also increased wheat growth and shoot P and N concentrations with the greatest effect on plant N concentration by C5 and on plant P concentration by C4. However, C2 decreased shoot N and P concentrations compared to the unamended soil. Most compost mulches (except C2) increased mycorrhizal colonization by up to 50% compared to the unamended soil.

Conclusions

Fine-textured compost mulches generally had a greater effect on soil properties and plant growth than coarse-textured composts. Despite distinct differences between the soils with respect to clay content, TOC and available P, the effect of the compost mulches on soil and plant properties was quite similar.  相似文献   

16.
We examine the effect of mulches on the soil volumetric water content (SVWC), pH, carbon (C), total and mineral (NH4 and NO3) nitrogen (N), total and bicarbonate phosphorus (P), and on the survival and relative growth rate of three species, Ipomea wolcottiana Rose, Lonchocarpus eriocarinalis Micheli and Caesalpinia eriostachys Benth, in a degraded seasonally dry tropical forest (SDTF) area. Our study year was unusually dry, with only half of the mean annual rainfall. Sixteen plots (5 × 6 m) for each of our four treatments, mulches with alfalfa (Medicago sativa L.) straw, forest litter (SDTF litter), polyethylene and bare soil (control), were used. In each plot, 20 tree saplings were planted of each species. The SVWC was higher in plots mulched with polyethylene than in bare soil plots. The soil pH did not change with mulching, and there were no differences between treatments in the concentrations of soil organic C, total N, NO3 and total P. However, soil concentrations of NH4 were highest in plots with alfalfa straw and of bicarbonate P in plots with polyethylene. Sapling survival was higher in polyethylene mulch plots than in other mulching treatments, in the order I.␣wolcottiana > C. eriostachys > L. eriocarinalis. Sapling survival under organic mulches, alfalfa straw and forest litter were similar, and lowest in bare soil. The relative growth rate followed the order L. eriocarinalis < C. eriostachys < I. wolcotiana, and the growth rate of all species was greatest under polyethylene mulch. We conclude that a combination of polyethylene mulch with species of high growth rate is best for restoring seasonally dry tropical areas.  相似文献   

17.
The large pool of actively cycling carbon (C) held in soils is susceptible to release due to changes in landuse, management, or climate. Yet, the amount and distribution of potentially mineralizable C present in soils of various types and the method by which this soil C fraction can best be quantified, are not well established. The distribution of total organic C (TOC), extractable C pools (hot-water-extractable and acid-hydrolyzable), and in vitro mineralizable C in 138 surface soils across a north Florida watershed was found to be quite heterogeneous. Thus, these C quality parameters could not statistically distinguish the eight landuses or four major soil orders represented. Only wetland and upland forest soils, with the largest and smallest C pool size, respectively, were consistently different from the soils of other landuse types. Variations in potential C mineralization were best explained by TOC (62%) and hot-water-extractable C (59%), whereas acid-hydrolyzable C (32%) and clay content (35%) were generally not adequate indicators of C bioavailability. Within certain landuse and soil orders (Alfisol, Wetland and Rangeland, all with >3% clay content), however, C mineralization and clay content were directly linearly correlated, indicating a possible stimulatory effect of clay on microbial processing of C. Generally, the sandy nature of these surface soils imparted a lack of protection against C mineralization and likely resulted in the lack of landuse/soil order differences in the soil C pools. If a single parameter is to be chosen to quantify the potential for soil C mineralization in southeastern U.S. coastal plain soils, we recommend TOC as the most efficient soil variable to measure. Author Contributions  Conceived of or designed study: Sabine Grunwald, Nick Comerford, and James Sickman—Performed research: Mi-Youn Ahn—Analyzed data: Mi-Youn Ahn, Andrew Zimmerman, and Nick Comerford—Contributed new methods or models: Andrew Zimmerman, Nick Comerford, and James Sickman—Wrote the paper: Mi-Youn Ahn, Andrew Zimmerman, and Nick Comerford.  相似文献   

18.
The effect of ammonium discharge from a food factory on the growth of attached microalgae was monitored north of the Hanko peninsula, on the southwestern coast of Finland. The impact of the discharge was studied at twelve localities, at four stages of seasonal succession. The microalgae were sampled from glass slides exposed at 0.4 m depth for two weeks. The variables measured for the microalgal growth were chlorophylla, primary production and total organic carbon (TOC). These were compared with planktonic chlorophylla and nutrient concentrations. The growth of attached microalgae displayed a consistent pattern of spatial distribution. Depending on season, TOC and primary production values were 7 to 70 times higher and chlorophylla values up to 1000 times higher close to the effluent outlet than in undisturbed areas of the archipelago. The microalgal samples near the discharge were characterized by low TOC/chlorophylla and TOC/primary production ratios. The temporal consistency of microalgal distribution illustrates the advantages of using attached algal assemblages in monitoring programmes.  相似文献   

19.
以次生常绿阔叶林为对照,选择立地条件相近的无经营、粗放经营和集约经营3种类型毛竹林为研究对象,应用密度-粒径联合分组以及化学、生物分析和傅里叶变换红外光谱(FTIR)方法,探讨经营措施对毛竹林土壤不同组分有机碳、氮含量,分配比例及结构特征的影响。结果表明: 与对照相比,无经营和粗放经营毛竹林显著提高了土壤总有机碳(TOC)、全氮(TN)、游离态颗粒有机碳、氮、可溶性有机碳(DOC)、氮(DON)和矿物结合态有机碳、氮的含量。无经营毛竹林虽然显著增大了游离态颗粒有机碳、氮的分配比例,但其与黏土矿物结合的有机碳依然是土壤有机碳的最大贮存库(67.6%)。集约经营导致竹林土壤有机碳、全氮的贮量及各组分有机碳、氮含量下降,但明显增大了DOC/TOC、微生物生物量氮与全氮比值以及微生物生物量碳和土壤有机碳的比值(微生物商)。经营措施对土壤有机碳的化学结构也具有显著影响。与对照相比,无经营和粗放经营毛竹林土壤有机碳中酚醇-OH、脂肪族-CH、芳香族C=C和羰基C=O吸收峰相对强度增强,土壤疏水性显著增加。土壤有机碳的脂肪碳、芳香碳和疏水性与土壤碳氮总量呈显著正相关,与微生物商呈显著负相关。在人为干扰减少的情况下,毛竹林凋落物、根系等有机质残体输入量的增多引起土壤难分解化合物的相对积累,使有机碳化学稳定性明显增强。同时,土壤黏土矿物质对土壤有机碳起到了很好的保护作用,通过矿物-有机碳复合使土壤碳储存稳定性更高,进而有利于土壤碳的长期保存。  相似文献   

20.
Effects of iron compounds on methanogenic fermentation the water polluted with fatty acids were studied. A natural readily available source of iron applicable to biological treatment of liquid wastes was searched for. A positive effect of iron on the methanogenic fermentation of fats and their degradation products--long-chain fatty acids--in aqueous media was demonstrated. It is recommended to add iron-containing clay, as an inexpensive and easily available iron source, in amounts providing the binding of the long-chain fatty acids present in wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号