首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of cellulose-inducible structures of Clostridium cellulovorans.   总被引:2,自引:0,他引:2  
Scanning electron microscopy was used to detect ultrastructural protuberances on the cellulolytic anaerobe Clostridium cellulovorans. Numerous ultrastructural protuberances were observed on cellulose-grown cells, but few were detected on glucose-, fructose-, cellobiose-, or carboxymethylcellulose (CMC)-grown cells. Formation of these protuberances was detected within 2 h of incubation in cellulose medium, but 4 h incubation was required before numerous structures were observed on the cells. When a soluble carbohydrate or CMC was mixed with cellulose-grown cells, the ultrastructural protuberances could no longer be detected. In fact, no protuberances were observed within 5 min following the addition of glucose, cellobiose, or methylglucose to cellulose-grown cells. The presence of these protuberances corresponded with the binding of the Bandeiraea simplicifolia BSI-B4 isolectin to the cell. Cellulose-grown cells had a greater level of observable lectin binding than cellobiose-grown cells, and lectin binding was not detected on glucose- or fructose-grown cells. In addition, lectin binding ability was lost by cellulose-grown cells following the addition of glucose, fructose, or methylglucose to the cellulose medium. A cellulose-affinity protein fraction expressing cellulase activity was also detected in cell extracts of cellobiose- or cellulose-grown cultures. However, this protein fraction was not detected in extracts of glucose-grown cultures, and was rapidly lost (within 5 min) following the addition of glucose to cellulose-grown cultures. The ability of C. cellulovorans to adhere to cellulose was also affected by the energy substrate, but not in the same manner as the protuberance formation or the cellulase-containing protein fraction. Rather, cellobiose-, cellulose-, and CMC-grown cultures adhered to cellulose, but this adherence was not affected by addition of glucose to the medium. This is the first report that soluble carbohydrates caused the rapid loss of some cellulose-inducible systems of C. cellulovorans.  相似文献   

2.
《Anaerobe》2001,7(4):227-236
The cellulolytic bacterium, Eubacterium cellulosolvens, altered its cytoplasmic membrane protein composition in response to growth on specific energy substrates. Electrophoresis profiles obtained from membrane protein fractions of cellulose-grown cells were different from that obtained from cells cultivated with other carbohydrates, such as cellobiose or glucose. In addition, [3H]palmitic acid labelling of cellulose-grown E. cellulosolvens revealed two lipoproteins that were not detected in glucose- or cellobiose-grown cultures. These lipoproteins partitioned with the membrane fraction, indicating their association with the cytoplasmic membrane. Proteinase K treatment of whole cells further suggested that these lipoproteins were exposed to the surface of the cell envelope. These membrane proteins and lipoproteins appear to be under some substrate-specific regulatory control with distinct, but as yet undetermined, roles in cellulose utilization. In addition, cellulose-grown E. cellulosolvens was found to posses a higher ratio of oleic acid (C18:1) to palmitic acid (C16:0) than cells cultivated on soluble carbohydrates. This change in the ratio of unsaturated to saturated fatty acids was consistent with a comparative increase of membrane fluidity. Further analysis of this shift in the fatty acid profile revealed a correlation with the appearance of protruberances on the cell surface. Such a shift of fatty acid composition may indicate that the assembly and function of proteins for cellulose utilization necessitates an increase of the membrane fluidity.  相似文献   

3.
A newly isolated mesophilic anaerobe, Bacteroides cellulosolvens, has the ability to produce cellulase and to degrade cellulose to cellobiose and glucose. It does not utilize glucose, and it lacks β-glucosidase activity. This anaerobe appears to degrade cellulose to cellobiose by cellulase action, and the presence of cells appears necessary for the formation of glucose.  相似文献   

4.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

5.
In coculture, Bacteroides cellulosolvens and Clostridium saccharolyticum fermented 33% more cellulose than did B. cellulosolvens alone. Also, cellulose digestion continued at a maximum rate 48 h longer in coculture. B. cellulosolvens hydrolyzes cellulose and supplies C. saccharolyticum with sugars and a growth factor replaceable by yeast extract. Alone, B. cellulosolvens exhibited an early cessation of growth which was not due to nutrient depletion, low pH, or toxic accumulation of acetic acid, ethanol, lactic acid, H2, CO2, cellobiose, glucose, or xylose. However, a 1-h incubation of B. cellulosolvens spent-culture medium with C. saacharolyticum cells starved for growth factor allowed a resumption of B. cellulosolvens growth. The symbiotic relationship of this naturally occurring coculture is one of mutualism, in which the cellulolytic microbe supplies the saccharolytic microbe with nutrients, and in turn the saccharolytic microbe removes a secondary metabolite toxic to the primary microbe.  相似文献   

6.
The location of cellulase in C. fulvus depends on the carbon source for growth and the age of the culture. When cells were grown on glucose or cellobiose all CMC-hydrolyzing enzyme was cell-bound but only part of the activity was located on the cell surface. Treatment of cells with EDTA, lysozyme, and detergents and subsequent fractionation experiments showed that cellulase was also located in the periplasm and bound to a membrane fraction. Growth on cellulose gave cell-free cellulase active against CMC. The enzyme was repressed by glucose but formed at a constant differential rate on cellobiose and amylose. This rate was 8-10 times lower than on cellulose and possible reasons for this are discussed.  相似文献   

7.
The nutrient requirements of the cellulolytic anaerobe Bacteroides cellulosolvens were determined, and a new synthetic medium was formulated for its growth. B. cellulosolvens showed optimum cellobiose consumption and product formation in medium containing 40 mM ammonia nitrogen, 3 mM phosphate, 1 mM sulfide, 100 μM magnesium and 45 μM iron. This microbe had an essential-vitamin requirement for biotin; while zinc, manganese and copper slightly stimulated cellobiose degradation. In the new synthetic medium B. cellulosolvens was able to degrade 30% more cellulose.  相似文献   

8.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

9.
Induction of cellulase was observed inFusarium sp. with reduction in lag period by lactose-pregrown cells as compared with glucose-pregrown cells. Insoluble cellulose (Sigmacell) induced maximum cellulase production in the induction medium. Supplementation of the culture growing on cellulose by cellobiose or glucose resulted in increased cellular growth and decreased cellulase production. Stepfeeding of cellobiose to the culture growting on carboxymethyl cellulose resulted in decreased cellulase production. Significant cellulase activity was detected in the culture filtrate of cells growing on Sigmacell supplemented with glucose, only when the glucose disappeared from the medium. This suggests that cellulase production may in part be regulated by catabolite repression.  相似文献   

10.
Specific cellulase production rates (SCPR) were compared with intracellular cyclic AMP (cAMP) levels in the thermophilic actinomycete, Thermomonospora curvata, during growth on several carbon sources in a chemically defined medium. SCPR and cAMP levels were 0.03 U (endoglucanase [EG] units) and 2 pmol per mg of dry cells, respectively, during exponential growth on glucose. These values increased to about 6 and 25, respectively, during growth on cellulose. Detectable EG production ceased when cAMP levels dropped below 10. Cellobiose (usually considered to be a cellulase inducer) caused a sharp decrease in cAMP levels and repressed EG production when added to cellulose-grown cultures. 2-deoxy-D-glucose, although nonmetabolizable in T. curvata, depressed cAMP to levels observed with glucose, but unlike glucose, the 2DG effect persisted until cells were washed and transferred to fresh medium. SCPR values and cAMP levels in cells grown in continuous culture under conditions of cellobiose limitation were markedly influenced by dilution rate (D). The maxima for both occurred at D = 0.085 (culture generation time of 11.8 h). When D was held constant and cellobiose concentration was increased over a 14-fold range to support higher steady state population levels, SCPR values decreased about fivefold, indicating that extracellular catabolite accumulation may be a factor in EG repression. The role of cAMP in the mechanism of this repression appears to be neither simple nor direct, since large changes (up to 200-fold) in SCPR accompany relatively small changes (10-fold) in cellular cAMP levels.  相似文献   

11.
The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose. The cytoplasmic membrane (CM) was isolated from OM-depleted cells after disruption with a French press. The OM and membrane vesicles isolated from the extracellular culture fluid of cellulose-grown cells had a higher density, much lower succinate dehydrogenase activity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles different from those of the CM. The OM from both glucose- and cellulose-grown cells and the extracellular membrane vesicles from cellulose-grown cultures exhibited higher endoglucanase, xylanase, and acetylesterase activities than the CM and other cell fractions. Endoglucanase 2 was absent from the isolated OM fractions of glucose- and cellulose-grown cells and from the extracellular membrane vesicles of cellulose-grown cells but was present in the CM and intracellular glycogen granule fractions, while endoglucanase 3 was enriched in the OM. Cellobiosidase was located primarily in the periplasm as previously reported, while cellobiase was mainly present in the glycogen granule fraction of glucose-grown cells and in a nongranular glycogen and CM complex in cellulose-grown cells. The cellobiase was not eluted from glycogen granules by cellobiose, maltose, and maltotriose nor from either the granules or the cell membranes by nondenaturing detergents but was eluted from both glycogen granules and cell membranes by high concentrations of salts. The eluted cellobiase rebound almost quantitatively when diluted and mixed with purified glycogen granules but exhibited a low affinity for Avicel cellulose. Thus, we have documented a method for isolation of OM from F. succinogenes, identified the OM origin of the extracellular membrane vesicles, and located glycanases and cellobiase in membrane and glycogen fractions.  相似文献   

12.
The genome sequence of Clostridium acetobutylicum ATCC 824, a noncellulolytic solvent-producing strain, predicts the production of various proteins with domains typical for cellulosomal subunits. Most of the genes coding for these proteins are grouped in a cluster similar to that found in cellulolytic clostridial species, such as Clostridium cellulovorans. CAC0916, one of the open reading frames present in the putative cellulosome gene cluster, codes for CelG, a putative endoglucanase belonging to family 9, and it was cloned and overexpressed in Escherichia coli. The overproduced CelG protein was purified by making use of its high affinity for cellulose and was characterized. The biochemical properties of the purified CelG were comparable to those of other known enzymes belonging to the same family. Expression of CelG by C. acetobutylicum grown on different substrates was studied by Western blotting by using antibodies raised against the purified E. coli-produced protein. Whereas the antibodies cross-reacted with CelG-like proteins secreted by cellobiose- or cellulose-grown C. cellulovorans cultures, CelG was not detectable in extracellular medium from C. acetobutylicum grown on cellobiose or glucose. However, notably, when lichenan-grown cultures were used, several bands corresponding to CelG or CelG-like proteins were present, and there was significantly increased extracellular endoglucanase activity.  相似文献   

13.
Extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, cellulose or wheat straw was analysed by 2D-NMR spectroscopy. Cellodextrins did not accumulate in the culture medium of cells grown on cellulose or straw. Maltodextrins and maltodextrin-1P were identified in the culture medium of glucose, cellobiose and cellulose grown cells. New glucose derivatives were identified in the culture fluid under all the substrate conditions. In particular, a compound identified as cellobionic acid accumulated at high levels in the medium of F. succinogenes S85 cultures. The production of cellobionic acid (and cellobionolactone also identified) was very surprising in an anaerobic bacterium. The results suggest metabolic shifts when cells were growing on solid substrate cellulose or straw compared to soluble sugars.  相似文献   

14.
Cellulase production by a thermophilic clostridium species   总被引:8,自引:5,他引:3       下载免费PDF全文
Strain M7, a thermophilic, anaerobic, terminally sporing bacterium (0.6 by 4.0 μm) was isolated from manure. It degraded filter paper in 1 to 2 days at 60 C in a minimal cellulose medium but was stimulated by yeast extract. It fermented a wide variety of sugars but produced cellulase only in cellulose or carboxymethyl-cellulose media. Cellulase synthesis not only was probably repressed by 0.4% glucose and 0.3% cellobiose, but also cellulase activity appeared to be inhibited by these sugars at these concentrations. Both C1 cellulase (degrades native cellulose) and Cx cellulase (β-1,4-glucanase) activities in strain M7 cultures were assayed by measuring the liberation of reducing sugars with dinitrosalicylic acid. Both activities had optima at pH 6.5 and 67 C. One milliliter of a 48-h culture of strain M7 hydrolyzed 0.044-meq of glucose per min from cotton fibers. The cellulase(s) from strain M7 was extracellular, produced during exponential growth, but was not free in the growth medium until approximately 30% of the cellulose was hydrolyzed. Glucose and cellobiose were the major soluble products liberated from cellulose by the cellulase. ZnCl2 precipitation appeared initially to be a good method for the concentration of cellulase activity, but subsequent purification was not successful. Isoelectric focusing indicated the presence of four Cx cellulases (pI 4.5, 6.3, 6.8, and 8.7). The rapid production and high activity of cellulases from this organism strongly support the basic premise that increased hydrolysis of native cellulose is possible at elevated temperature.  相似文献   

15.
The production of extracellular cellulases by Chaetomium cellulolyticum could be induced by slow feeding of cellobiose to the cultures. Both the rate of production and the amount of activity were comparable to that obtained in batch cultivation on cellulose. The specific filter paper activity of 2.06 U per mg protein was almost two times higher than that obtained in cellulose medium. Cellulases were not induced when glucose was slowly fed to the cultures. Changing the feed stream from glucose to cellobiose resulted in a rapid accumulation of cellulases. Thus cellobiose has a similar role in cellulase induction in C. cellulolyticum, as earlier shown for Trichoderma reesei.  相似文献   

16.
《Insect Biochemistry》1986,16(6):929-932
The cellulase from the termite Nasutitermes walkeri consists of two enzymes. Each has broad specificity with predominantly one activity. One enzyme is an endo-gb-1,4-glucanase (EC 3.2.1.4) which predominantly cleaves cellulose randomly to glucose, cellobiose and cellotriose. It hydrolyses cellotetraose to cellobiose but will not hydrolyse cellobiose or cellotriose. The second enzyme component is a β-1,4-glucosidase (EC 3.2.1.21) as its major activity is to hydrolyse cellobiose, cellotriose and cellotetraose to glucose; it has some exoglucosidase activity as glucose is the only product produced from cellulose. Its cellobiase activity is inhibited by glucono-δ-lactone.  相似文献   

17.
Protein and cellulose activities were measured in culture supernatants of the anaerobic ruminal fungus Neocallimastix frontalis EB188 established in glucose medium and switched to either glucose, cellobiose, or cellulose media. Polyacrylamide gel electrophoresis was used to show differences caused by changing medium carbon source. Culture supernatants contained proteins with molecular weights ranging from greater than 116,000 to about 19,000. Low levels of cellulose activity were evident in glucose-grown cultures. Increased amounts of slowly migrating cellulase activities appeared in the supernatants of glucose-grown cultures switched to cellulose. Cellulase activities which reacted differentially during colorimetric and in situ assays were produced. Isoelectric points of cellulase activities varied from 3.7 to 8.3, and activities possessed optimal pHs of between 5.9 and 6.5.  相似文献   

18.
Protein and cellulose activities were measured in culture supernatants of the anaerobic ruminal fungus Neocallimastix frontalis EB188 established in glucose medium and switched to either glucose, cellobiose, or cellulose media. Polyacrylamide gel electrophoresis was used to show differences caused by changing medium carbon source. Culture supernatants contained proteins with molecular weights ranging from greater than 116,000 to about 19,000. Low levels of cellulose activity were evident in glucose-grown cultures. Increased amounts of slowly migrating cellulase activities appeared in the supernatants of glucose-grown cultures switched to cellulose. Cellulase activities which reacted differentially during colorimetric and in situ assays were produced. Isoelectric points of cellulase activities varied from 3.7 to 8.3, and activities possessed optimal pHs of between 5.9 and 6.5.  相似文献   

19.
《Experimental mycology》1990,14(4):405-415
The relationship between β-linked disaccharide (cellobiose, sophorose) utilization and cellulase, particularly cellobiohydrolase I (CBH I) synthesis by Trichoderma reesei, was investigated. During growth on cellobiose and sophorose as carbon sources in batch as well as resting-cell culture, only sophorose induced cellulase formation. In the latter experiments, sophorose was utilized at a much lower rate than cellobiose, and the more cellulase produced, the lower its rate of utilization. Cellobiose and sophorose were utilized by the fungus mainly via hydrolysis by the cell wall- and cell membrane-bound β-glucosidase. Addition of sophorose to T. reesei growing on cellulose did not further stimulate cellulase synthesis, and addition of cellobiose was inhibitory. Cellobiose, however, promoted cellulase formation in both batch and resting cell cultures, when its hydrolysis by β-glucosidase was inhibited by nojirimycin. No cellulase formation was observed when the uptake of glucose (produced from cellobiose by β-glucosidase) was inhibited by 3-O-methylglucoside. Cellodextrins (C2 to C6) promoted formation of low levels of cellobiohydrolase I in indirect proportion to their rate of hydrolysis by β-glucosidase. Studies on the uptake of [3H]cellobiose, [3H]sophorose, and [14C]glucose in the presence of inhibitors of β-glucosidase (nojirimycin) and glucose transport (3-O-methylglucoside) show that glucose transport occurs at a much higher rate than disaccharide hydrolysis. Extracellular disaccharide hydrolysis accounts for at least 95% of their metabolism. The presence of an uptake system for cellobiose was established by demonstrating the presence of intracellular labeled [3H]cellobiose in T. reesei after its extracellular supply. The data are consistent with induction of cellulase and particularly CBH I formation in T. reesei by β-linked disaccharides under conditions where their uptake is favored at the expense of extracellular hydrolysis.  相似文献   

20.
Five cellulases were fractionated from a commercial cellulase preparation (CelluclastTM) Two isoenzymes of cellobiohydrolase I (CBHI)(pI = 4.1) could be proved to be real exo-glucanases due to their activity towards MU (=methylumbelliferyl)-lactoside being inhibited by cellobiose (5 mM) and due to production of cellobiose from carboxymethylcellulose (CMC) as the sole final product.Two isoenzymes of CBHII (pI=6.15, 6.0) were shown to act as endo-glucanases because they produced glucose, cellobiose and cellotetraose from CMC and because they were not inhibited by cellobiose when decomposing MU-lactoside. Results confirm recent reports in the literature classifying CBHI and CBHII as exo-type and endo-type cellulases, respectively. Both the CBHI and the CBHII isoenzymes were shown to be active towards CMC and amorphous cellulose.CBHI and CBHII reactions could be differentiated from one another by the velocities of decomposition of CMC: CBHI acts slowly and linearly whereas CBHII acts strongly and exponentially.The fifth of the purified enzymes must be classed as a conventional endoglucanase which exhibits activity towards CMC but fails to be active towards MU-lactoside and amorphous cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号