首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retinoblastoma (Rb) tumor suppressor gene product, pRb, has an established role in the implementation of cellular senescence, the state of irreversible G1 cell cycle arrest provoked by diverse oncogenic stresses. In murine cells, senescence cell cycle arrest can be reversed by subsequent inactivation of pRb, indicating that pRb is required not only for the onset of cellular senescence, but also for the maintenance of senescence program in murine cells. However, in human cells, once pRb is fully activated by p16INK4a, senescence cell cycle arrest becomes irreversible and is no longer revoked by subsequent inactivation of pRb, suggesting that p16INK4a/Rb-pathway activates an alternative mechanism to irreversibly block the cell cycle in human senescent cells. Here, we discuss the molecular mechanism underlying the irreversibility of senescence cell cycle arrest and its potential towards tumor suppression.  相似文献   

2.
Inhibition of apoptosis by the retinoblastoma gene product.   总被引:20,自引:2,他引:18       下载免费PDF全文
Tissue homeostasis and the prevention of neoplasia require regulatory co-ordination between cellular proliferation and apoptosis. Several cellular proteins, including c-myc and E2F, as well as viral proteins such as E1A, have dual functions as positive regulators of apoptosis and proliferation. The product of the retinoblastoma tumor suppressor gene, pRb, binds these proteins and is known to function in growth suppression. To examine whether pRb may function as a negative regulator of both proliferation and apoptosis, we analyzed apoptosis induced in transfected derivatives of the human osteosarcoma cell line SAOS-2. Ionizing radiation induced apoptosis in a time- and dose-dependent manner in SAOS-2 cells, which lack pRb expression. In both a transient and stable transfection assay, SAOS-2 derivatives expressing wild-type (wt) pRb exhibited increased viability and decreased apoptosis following treatment at a variety of radiation doses. Expression in SAOS-2 of a mutant pRb that fails to complex with several known binding partners of pRb, including E1A and E2F, did not protect SAOS-2 cells from apoptosis. Radiation exposure induced a G2 arrest in SAOS-2 and in derivatives expressing pRb. Inhibition of DNA synthesis and cell cycle progression by aphidicolin treatment failed to protect SAOS-2 cells or pRb-expressing isolates from undergoing apoptosis. Our data document a novel function for pRb in suppressing apoptosis and suggest that several proteins shown to induce apoptosis, including E1A, E2F and c-myc, may do so by interfering with the protective function of pRb.  相似文献   

3.
In an effort to understand the possible role of Rb in cellular growth control, we have investigated the abundance and the state of phosphorylation of Rb protein (pRb) in normal and colon tumor cell lines as well as in matched colon tumors, adenomas and adjoining normal colonic mucosa. Resting normal human fibroblast cell lines were found to have only unphosphorylated pRb and phosphorylation of pRb occurred when the cells entered G1-S phase. In general, the colon tumor tissues had atleast 1.5–2.0 fold increase in the abundance of pRb and 1.5–2.5 fold increase in the percentage of its phosphorylation as compared to the corresponding normal colonic mucosa. Whereas, the adenomas had similar pRb level and its phosphorylation status as observed in the normal colonic mucosa. The actively growing tumor cell lines had approximately two fold higher total pRb than normal cell lines. Although, the percentage of phosphorylated form in growing tumor cell lines as well as normal cell lines were almost equal, it was still considerably higher than normal colonic mucosa. Moreover, DNA binding assay revealed reduced binding affinity of pRb from colon tumor cell line SW480 as compared to the normal cell line W138. These results suggest that the abundance of pRb and its phosphorylation level may have a role in the cellular growth control in human colonic epithelium.  相似文献   

4.
Loss of Rb1 tumor suppressor gene function is involved in the genesis of most human cancers. Novel therapies targeting Rb1 have been slow to develop because of our incomplete understanding of its molecular mechanisms of action. Rb1 protein (pRb) binds a host of cellular genes and proteins, and these molecular interactions mediate its various functions. Given the potential complexity of these molecular interactions and the lack of established methods for pRb purification, it has been difficult to systematically identify gene and protein interactions relevant to tumor suppression in different tissues in vivo. To address this limitation, we have generated a dual affinity tagged Rb1 allele in the mouse. The tagged allele functions as wild type and the encoded protein can be purified by tandem affinity chromatography. This allele will facilitate identification and characterization of native pRb molecular interactions in any tissue accessible in the mouse. genesis 48:121–126, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Although the retinoblastoma protein (pRb) has been implicated in the processes of cellular differentiation, there is no compelling genetic or in vivo evidence that such activities contribute to pRb-mediated tumor suppression. Motivated by cell culture studies suggesting that Ras is a downstream effector of pRb in the control of differentiation, we have examined the tumor and developmental phenotypes of Rb and K-ras double-knockout mice. We find that heterozygosity for K-ras (i) rescued a unique subset of developmental defects that characterize Rb-deficient embryos by affecting differentiation but not proliferation and (ii) significantly enhanced the degree of differentiation of pituitary adenocarcinomas arising in Rb heterozygotes, leading to their prolonged survival. These observations suggest that Rb and K-ras function together in vivo, in the contexts of both embryonic and tumor development, and that the ability to affect differentiation is a major facet of the tumor suppressor function of pRb.  相似文献   

6.
The retinoblastoma susceptibility gene (RB) product, the retinoblastoma protein (pRb), functions as a regulator of cell proliferation. Introduction of the RB gene into SAOS-2 osteosarcoma cells, which lack functional pRb, prevents cell cycle progression. Such growth-suppressive functions can be modulated by phosphorylation of pRb, which occurs via cell cycle-regulated kinases. We show that constitutively expressed cyclins A and E can overcome pRb-mediated suppression of proliferation. pRb becomes hyperphosphorylated in cells overexpressing these cyclins, and this phosphorylation is essential for cyclin A- and cyclin E-mediated rescue of pRb-blocked cells. This suggests that G1 and S phase cyclins can act as regulators of pRb function in the cell cycle by promoting pRb phosphorylation.  相似文献   

7.
8.
The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.  相似文献   

9.
《Cellular signalling》2014,26(9):1870-1877
Mitogen-inducible gene-6 (Mig-6) is a cytosolic multiadaptor protein that is best known for its role as a negative feedback regulator of epidermal growth factor receptor (EGFR) mediated signalling. Alternative roles of Mig-6 are becoming increasingly recognised. Consistently with this, Mig-6 was demonstrated to be involved in a broad spectrum of cellular events including tumour suppression which may include the induction of cellular senescence. Here, we investigated the mechanisms of Mig-6 induced premature cell senescence. Endogenous Mig-6 is poorly expressed in young fibroblasts, whilst its expression rises in cells presenting with typical features of senescence. Overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early passage diploid lung fibroblasts (WI-38). Interestingly, Mig-6 overexpression reduced retinoblastoma protein (pRb) phosphorylation at the inactivating Ser249/Thr252 sites. We also found that phosphorylation of these sites in pRb is increased in the presence of the B-Raf V600E oncogenic mutation. We further show that Mig-6 overexpression reduces B-Raf V600E mediated pRb inactivation and preserves pRb function.  相似文献   

10.
Proteolytic cleavage of key cellular proteins by caspases (ICE, CPP32, and Ich-1/Nedd2) may be crucial to the apoptotic process. The retinoblastoma tumor suppressor gene is a negative regulator of cell growth and the retinoblastoma protein (pRb) exhibits anti-apoptotic function. We show that pRb is cleaved during apoptosis induced by either UV irradiation or anti-Fas antibody. Our studies implicate CPP32-like activity in the proteolytic cleavage of pRb. The kinetics of proteolytic cleavage of pRb during apoptosis differ from that observed for other cellular proteins, suggesting that the specific cleavage of pRb during apoptosis may be an important event.  相似文献   

11.
The retinoblastoma tumor suppressor protein (pRb) can associate with the transforming proteins of several DNA tumor viruses, including the large T antigen encoded by polyomavirus (Py T Ag). Although pRb function is critical for regulating progression from G1 to S phase, a role for pRb in S phase has not been demonstrated or excluded. To identify a potential effect of pRb on DNA replication, pRb protein was added to reaction mixtures containing Py T Ag, Py origin-containing DNA (Py ori-DNA), and murine FM3A cell extracts. We found that pRb strongly represses Py ori-DNA replication in vitro. Unexpectedly, however, this inhibition only partially depends on the interaction of pRb with Py T Ag, since a mutant Py T Ag (dl141) lacking the pRb interaction region was also significantly inhibited by pRb. This result suggests that pRb interferes with or alters one or more components of the murine cell replication extract. Furthermore, the ability of Py T Ag to be phosphorylated in such extracts is markedly reduced in the presence of pRb. Since cyclin-dependent kinase (CDK) phosphorylation of Py T Ag is required for its replication function, we hypothesize that pRb interferes with this phosphorylation event. Indeed, the S-phase CDK complex (cyclin A-CDK2), which phosphorylates both pRb and Py T Ag, alleviates inhibition caused by pRb. Moreover, hyperphosphorylated pRb is incapable of inhibiting replication of Py ori-DNA in vitro. We propose a new requirement for maintaining pRb phosphorylation in S phase, namely, to prevent deleterious effects on the cellular replication machinery.  相似文献   

12.
13.
Hair cells, the sensory cells of inner ear, perform essential functions in hearing and balance. However, mammalian hair cells, like most of the CNS neurons, lack the capacity to regenerate. This is in sharp contrast to lower vertebrates in which hair cell regeneration occurs spontaneously through cell division of supporting cells, which leads to hearing restoration. It is believed that the lack of regeneration in mammals is, to a large degree, due to the block of cell cycle re-entry imposed by negative cell growth genes in the inner ear. Recent studies have identified retinoblastoma gene, a well-known tumor suppressor, as the key gene involved in cell cycle exit of inner ear sensory cells. In the inner ear of pRb conditional knockout mice, hair cells undergo continuous cell division, and at the same time differentiate and become functional. Cell division continues in early postnatal cochlea and adult vestibule. Remarkably, the vestibular hair cells without pRb survive, and function at both the cellular and system levels. The time course and effects of pRb inhibition shows that there is a separation between the roles of pRb in cell cycle exit, and subsequent maturation and apoptosis. Those studies reveal distinctly different roles of pRb in the cochlear and vestibular sensory epithelia. The review discusses additional areas to be studied for regeneration of mature hair cells, and highlights the importance of transient and reversible block of pRb function as one of the routes to be explored for regeneration.  相似文献   

14.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

15.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

16.
Wen H  Ao S 《Gene》2001,263(1-2):85-92
The retinoblastoma protein (pRb) functions as a critical master regulator in cell cycle regulation, which is an important cell-regulatory process, through its interaction with various cellular proteins. Using the C-terminus of human pRb and the yeast two-hybrid system, a novel protein named RBP21 that contains 187 amino acid residues with a calculated molecular weight of 21 kDa was identified as a pRb-binding protein. Sequence analysis indicates that RBP21 shares homology with other retinoblastoma-binding proteins in the pRb-binding motif LxCxE at the C-terminal region. In vitro specific interaction between pRb and RBP21 was confirmed using in vitro translation products. When overexpressed in COS-7 cells, RBP21 could co-immunoprecipitate with pRb. This interaction requires the LxCxE motif of RBP21 and the entire pocket region of pRb. Each point mutation of the conserved amino acid residues in pRb-binding motif of RBP21 abolished its specific interaction with pRb. RH mapping result showed that this novel gene was mapped to chromosome region 15q21.1-21.3. Northern blot analysis suggested that RBP21 was widely expressed in various human tissues and cancer cell lines. When expressed in HeLa cells as a green fluorescent protein fusion, RBP21 was distributed throughout the cell.  相似文献   

17.
18.
19.
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the retinoblastoma tumor suppressor protein, pRb. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-b-galactosidase (SA-b-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. We have recently discovered that expression of active pRb induces expression and altered localization of the ERM family member ezrin, an actin-binding protein involved in membrane-cytoskeletal signaling. pRb expression results in the stimulation of cdk5-mediated phosphorylation of ezrin with subsequent membrane association and induction of cell shape changes, linking pRb activity to cytoskeletal regulation in senescent cells. Cdk5 activity increases in senescing cells and is required for expression of SA-b-gal and for actin polymerization accompanying acquisition of the senescent morphology. These results begin to illuminate the mechanisms underlying induction of senescence and the senescent shape change and describe new pathways that may contribute to the ability of senescent cells to influence tumor growth.  相似文献   

20.
Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the retinoblastoma tumor suppressor protein, pRb. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-beta-galactosidase (SA-beta-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. We have recently discovered that expression of active pRb induces expression and altered localization of the ERM family member ezrin, an actin-binding protein involved in membrane-cytoskeletal signaling. pRb expression results in the stimulation of cdk5-mediated phosphorylation of ezrin with subsequent membrane association and induction of cell shape changes, linking pRb activity to cytoskeletal regulation in senescent cells. Cdk5 activity increases in senescing cells and is required for expression of SA-beta-gal and for actin polymerization accompanying acquisition of the senescent morphology. These results begin to illuminate the mechanisms underlying induction of senescence and the senescent shape change and describe new pathways that may contribute to the ability of senescent cells to influence tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号