首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an in vitro inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly, in vivo experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.  相似文献   

2.
Glioma is one of the most common malignancies in the world. However, an effective regiment is lacking. Increasing evidence indicated that PI3K/AKT signaling is critical for the survival of glioma. In this study, we aimed to study the effect of aplysin on the survival and proliferation of GL26 glioma cells and the involved mechanisms. The data showed that aplysin suppressed the viability of glioma cells in both dose- and time-dependent manners. It also induced G0/G1 arrest and apoptosis in glioma cells. Western blot assays revealed that aplysin treatment changed p-AKT expression by impairing the formation of Heat shock protein 90/AKT complex. Aplysin significantly increased the survival time of mice-bearing glioma and reduced the weights of the established gliomas. Collectively, aplysin can inhibit the proliferation of GL26 glioma cells and induce apoptosis in vitro, perhaps through suppressing PI3K/AKT pathway. It can also inhibit glioma growth in vivo and prolong the survival of mice. Thus, aplysin may be a novel therapeutic drug for glioma.  相似文献   

3.
Endothelial barrier dysfunction is a critical pathophysiological process of sepsis. Impaired endothelial cell migration is one of the main reasons for endothelial dysfunction. Statins may have a protective effect on endothelial barrier function. However, the effect and mechanism of statins on lipopolysaccharide (LPS)‐induced endothelial barrier dysfunction remain unclear. Simvastatin (SV) was loaded in nanostructured lipid carriers to produce SV nanoparticles (SV‐NPs). Normal SV and SV‐NPs were used to treat human umbilical vein vascular endothelial cells (HUVECs) injured by LPS. Barrier function was evaluated by monitoring cell monolayer permeability and transendothelial electrical resistance, and cell migration ability was measured by a wound healing assay. LY294002 and imatinib were used to inhibit the activity of PI3K/Akt and platelet‐derived growth factor receptor (PDGFR) β. IQ‐GTPase‐activating protein 1 (IQGAP1) siRNA was used to knockdown endogenous IQGAP1, which was used to verify the role of the PDGFRβ/PI3K/Akt/IQGAP1 pathway in SV/SV‐NPs‐mediated barrier protection in HUVECs injured by LPS. The results show that SV/SV‐NPs promoted the migration and decreased the permeability of HUVECs treated with LPS, and the efficacy of the SV‐NPs exceeded that of SV significantly. LY294002, imatinib and IQGAP1 siRNA all suppressed the barrier protection of SV/SV‐NPs. SV/SV‐NPs promoted the secretion of platelet‐derived growth factor‐BB (PDGF‐BB) and activated the PDGFRβ/PI3K/Akt/IQGAP1 pathway. SV preparations restored endothelial barrier function by restoring endothelial cell migration, which is involved in the regulation of the PDGFRβ/PI3K/Akt/IQGAP1 pathway and PDGF‐BB secretion. As an appropriate formulation for restoring endothelial dysfunction, SV‐NPs may be more effective than SV.  相似文献   

4.
Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.  相似文献   

5.
6.
7.
PI3K is a downstream target of multiple cell-surface receptors, which acts as a crucial modulator of both cell polarization and survival. PI3K/AKT signaling pathway is commonly involved in cancer, atherosclerosis, and other diseases. However, its role in cardiovascular diseases, especially in atherosclerosis, remains to be further investigated. To determine the effect of PI3K/AKT signaling pathway on cellular inflammatory response and oxidative stress, PI3K inhibitor (GDC0941) and AKT inhibitor (MK2206) were used. First, THP-1 cells were incubated with ox-LDL (100 µg/ml) to establish an in vitro atherosclerosis model. The inflammatory factors and foam cell formation were then evaluated to ascertain and compare the effects of PI3K and AKT inhibition. ApoE−/− mice fed a high-fat diet were used to assess the roles of PI3K and AKT in aortic plaque formation. Our results showed that the inhibition of PI3K or AKT could suppress the activation of NLRP3, decreased the expression levels of p-p65/p65 and reduced the production of mitochondrial reaction oxygen species (mitoROS) in THP-1 cells. Inhibition of PI3K or AKT could also reduced atherosclerosis lesion and plaque area, and decreased the levels of NLRP3 and IL-1β in ApoE−/− mice. The effect of PI3K inhibition was more significant than AKT. Therefore, PI3K inhibition can retard the progress of atherosclerosis. Besides, there may be other AKT-independent pathways that regulate the formation of atherosclerosis.  相似文献   

8.
9.
He Z  Gao Y  Deng Y  Li W  Chen Y  Xing S  Zhao X  Ding J  Wang X 《PloS one》2012,7(4):e35926
Pulmonary fibrosis is characterized by lung fibroblast proliferation and collagen secretion. In lipopolysaccharide (LPS)-induced acute lung injury (ALI), aberrant proliferation of lung fibroblasts is initiated in early disease stages, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4) expression in cultured mouse lung fibroblasts using TLR4-siRNA-lentivirus in order to investigate the effects of LPS challenge on lung fibroblast proliferation, phosphoinositide3-kinase (PI3K)-Akt pathway activation, and phosphatase and tensin homolog (PTEN) expression. Lung fibroblast proliferation, detected by BrdU assay, was unaffected by 1 mug/mL LPS challenge up to 24 hours, but at 72 hours, cell proliferation increased significantly. This proliferation was inhibited by siRNA-mediated TLR4 knockdown or treatment with the PI3K inhibitor, Ly294002. In addition, siRNA-mediated knockdown of TLR4 inhibited the LPS-induced up-regulation of TLR4, down-regulation of PTEN, and activation of the PI3K-Akt pathway (overexpression of phospho-Akt) at 72 hours, as detected by real-time PCR and Western blot analysis. Treatment with the PTEN inhibitor, bpV(phen), led to activation of the PI3K-Akt pathway. Neither the baseline expression nor LPS-induced down-regulation of PTEN in lung fibroblasts was influenced by PI3K activation state. PTEN inhibition was sufficient to exert the LPS effect on lung fibroblast proliferation, and PI3K-Akt pathway inhibition could reverse this process. Collectively, these results indicate that LPS can promote lung fibroblast proliferation via a TLR4 signaling mechanism that involves PTEN expression down-regulation and PI3K-Akt pathway activation. Moreover, PI3K-Akt pathway activation is a downstream effect of PTEN inhibition and plays a critical role in lung fibroblast proliferation. This mechanism could contribute to, and possibly accelerate, pulmonary fibrosis in the early stages of ALI/ARDS.  相似文献   

10.
Escherichia coli endotoxin LPS regulates blood-brain barrier permeability by disrupting the tight junction (TJ) complex between brain endothelial cells. This study used Bend.3 cells to examine the signaling networks involved in the hyperpermeability of the brain endothelial barrier caused by LPS. The LPS-induced alterations in the brain endothelial barrier were associated with PKC (a, β, ζ) and RhoA, but were independent of PI3K and the tyrosine kinase pathway. Inhibition of PKC (a, β, ζ) and RhoA activity using shRNA and dominant negative mutants diminished the effects of LPS on the brain's endothelial TJs. The interactions between the PKC and Rho pathways were therefore examined. PKC-a and PKC-ζ, but not PKC-β interacted with RhoA in Bend.3 cells stimulated by LPS. PKC-a acted as the upstream molecule for Rho and PKC-ζ acted as the downstream target for Rho. Comparing the effect of double inhibition of "Rho and PKC" and single inhibition of "Rho" or "PKC" confirmed that this interaction is critical for LPS-induced brain endothelial cell hyperpermeability. Collectively these data are the first to suggest that LPS affects the brain's endothelial TJ barrier via PKC (a, β, ζ)- and RhoA, independent of the PI3K and tyrosine kinase pathways. In addition, PKC-a and PKC-ζ, respectively, act as the upstream and downstream regulator for RhoA in the process.  相似文献   

11.
Cao C  Chen Y  Wang W  Liu Y  Liu G 《Peptides》2011,32(2):209-215
Ghrelin has wide effects on cardiovascular and endocrine system. The aims of this study are to investigate the direct damage effect of high glucose and high palmitate on cardiomyocyte, and to study the effect of ghrelin on insulin resistance induced by glucotoxicity/lipotoxicity in cardiomyocyte and the possible mechanism underlying the cardioprotective activities of ghrelin. The changes of [3H]-2-deoxy-d-glucose (3H-G) intake rates were detected by isotope tracer method and the gene expressions in insulin signal transduction pathway were detected by real-time PCR and Western blot assay. The 3H-G intake rate significantly reduced in high glucose (25 mmol/l) or high palmitate (0.5 mmol/l) treated primary rat ventricular myocytes. After the treatment of ghrelin (10−7 mol/l), the 3H-G intake rate recovered to the normal level. In addition, the phosphorylation of AKT occurred in 10 min and was the highest in 30 min after the stimulation with ghrelin, which can be blocked by phosphoinositide 3-kinase (PI3K) inhibitor, LY2940002. Ghrelin also increased the mRNA levels of glucose transporter 4 (GLUT4), peroxisome proliferators (PPARr) and AMP activated protein kinase (AMPK) genes in insulin signal transduction pathway. These results indicate that the direct damage of high glucose and high palmitate on cardiomyocyte might be through insulin resistance (IR). Ghrelin can inhibit gluco/lipotoxicity induced insulin resistance by PI3K/AKT pathway. This may provide a clue for therapy for myocardial disease in diabetes mellitus.  相似文献   

12.
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) is histologically characterized by extensive alveolar barrier disruption and excessive fibroproliferation responses. Protectin DX (PDX) displays anti‐inflammatory and potent inflammation pro‐resolving actions. We sought to investigate whether PDX attenuates LPS (lipopolysaccharide)‐induced lung injury via modulating epithelial cell injury repair, apoptosis and fibroblasts activation. In vivo, PDX was administered intraperitoneally (IP) with 200 ng/per mouse after intratracheal injection of LPS, which remarkedly stimulated proliferation of type II alveolar epithelial cells (AT II cells), reduced the apoptosis of AT II cells, which attenuated lung injury induced by LPS. Moreover, primary type II alveolar cells were isolated and cultured to assess the effects of PDX on wound repair, apoptosis, proliferation and transdifferentiation in vitro. We also investigated the effects of PDX on primary rat lung fibroblast proliferation and myofibroblast differentiation. Our result suggests PDX promotes primary AT II cells wound closure by inducing the proliferation of AT II cells and reducing the apoptosis of AT II cells induced by LPS, and promotes AT II cells transdifferentiation. Furthermore, PDX inhibits transforming growth factor‐β1 (TGF‐β1) induced fibroproliferation, fibroblast collagen production and myofibroblast transformation. Furthermore, the effects of PDX on epithelial wound healing and proliferation, fibroblast proliferation and activation partly via the ALX/ PI3K signalling pathway. These data present identify a new mechanism of PDX which targets the airway epithelial cell and fibroproliferation are potential for treatment of ARDS/ALI.  相似文献   

13.
BackgroundArbutin (Ar) has anti-oxidative and anti-inflammatory activities. However, the effects of Ar on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) are not clear.PurposeThis study aimed to investigate the effects of Ar on LPS-induced AKI in rats.MethodsThe possible data regarding the effects of Ar on AKI were collected by network pharmacology research. Histological changes in the kidney and the levels of blood urea nitrogen, serum creatinine, and kidney injury molecule 1 were measured to assess the effects of Ar on renal function in LPS-induced AKI. The levels of inflammatory were detected by live small-animal imaging, cytometric bead array and enzyme linked immunosorbent assay. The levels of reactive oxygen species and apoptosis of primary kidney cells were detected by flow cytometry. The oxidative stress-related markers were detected by the cuvette assay. The TLR4/NF-κB and PI3K/Akt/Nrf2 levels and apoptosis were detected by Western blot analysis. The effects of GDC-0068 (GDC, Akt inhibitor) on Ar interposed on LPS-induced NRK-52e cell apoptosis were investigated by flow cytometry.ResultsThe data collected by network pharmacology suggested that Ar might inhibit AKI by exerting an anti-inflammatory effect and regulating the Akt signaling pathway. The experimental results showed that Ar markedly improved renal function, and attenuated inflammation and cell apoptosis via regulating PI3K/Akt/Nrf2 pathway following LPS challenge in vivo, which blocked by GDC effectively in vitro.ConclusionIn a word, this study demonstrated that Ar attenuated LPS-induced AKI by inhibiting inflammation and apoptosis via the PI3K/Akt/Nrf2 pathway.  相似文献   

14.
Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-κB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-κB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-κB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-κB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARγ), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38MAPK), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells.  相似文献   

15.
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.  相似文献   

16.
C16 peptide and angiopoietin-1 (Ang-1) have been found to have anti-inflammatory activity in various inflammation-related diseases. However, their combined role in acute respiratory distress syndrome (ARDS) has not been investigated yet. The objective of this study was to investigate the effects of C16 peptide and Ang-1 in combination with lipopolysaccharide (LPS)-induced inflammatory insult in vitro and in vivo. Human pulmonary microvascular endothelial cells and human pulmonary alveolar epithelial cells were used as cell culture systems, and an ARDS rodent model was used for in vivo studies. Our results demonstrated that C16 and Ang-1 in combination significantly suppressed inflammatory cell transmigration by 33% in comparison with the vehicle alone, and decreased the lung tissue wet-to-dry lung weight ratio to a maximum of 1.53, compared to 3.55 in the vehicle group in ARDS rats. Moreover, C  +  A treatment reduced the histology injury score to 60% of the vehicle control, enhanced arterial oxygen saturation (SO2), decreased arterial carbon dioxide partial pressure (PCO2), and increased oxygen partial pressure (PO2) in ARDS rats, while also improving the survival rate from 47% (7/15) to 80% (12/15) and diminishing fibrosis, necrosis, and apoptosis in lung tissue. Furthermore, when C  +  A therapy was administered 4 h following LPS injection, the treatment showed significant alleviating effects on pulmonary inflammatory cell infiltration 24 h postinsult. In conclusion, our in vitro and in vivo studies show that C16 and Ang-1 exert protective effects against LPS-induced inflammatory insult. C16 and Ang-1 hold promise as a novel agent against LPS-induced ARDS. Further studies are needed to determine the potential for C16 and Ang-1 in combination in treating inflammatory lung diseases.  相似文献   

17.
Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act upstream upregulating this pathway.  相似文献   

18.

Background

PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.

Experimental Design

Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay.

Results

Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56%) and MK-2206 (30 µM-49%) treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.

Conclusions

The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.  相似文献   

19.
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.  相似文献   

20.
Oncogenic mutations in PIK3CA lead to an increase in intrinsic phosphoinositide kinase activity, but it is thought that increased access of PI3Kα (phosphoinositide 3-kinase α) to its PM (plasma membrane) localized substrate is also required for increased levels of downstream PIP3/Akt [phosphoinositide-3,4,5-trisphosphate/also called PKB (protein kinase B)] signalling. We have studied the subcellular localization of wild-type and the two most common oncogenic mutants of PI3Kα in cells maintained in growth media, and starved or stimulated cells using a novel method in which PI3Kα is pre-formed as a 1:1 p110α:p85α complex in vitro then introduced into live cells by microinjection. Oncogenic E545K and H1047R mutants did not constitutively interact with membrane lipids in vitro or in cells maintained in 10% (v/v) FBS. Following stimulation of RTKs (receptor tyrosine kinases), microinjected PI3Kα was recruited to the PM, but oncogenic forms of PI3Kα were not recruited to the PM to a greater extent and did not reside at the PM longer than the wild-type PI3Kα. Instead, the E545K mutant specifically bound activated Cdc42 in vitro and microinjection of E545K was associated with the formation of cellular protrusions, providing some preliminary evidence that changes in protein–protein interactions may play a role in the oncogenicity of the E545K mutant in addition to the well-known changes in lipid kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号