首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rad1 gene is evolutionarily conserved from yeast to human. The fission yeast Schizosaccharomyces pombeRad1 ortholog promotes cell survival against DNA damage and is required for G2/M checkpoint activation. In this study, mouse embryonic stem (ES) cells with a targeted deletion of Mrad1, the mouse ortholog of this gene, were created to evaluate its function in mammalian cells. Mrad1-/- ES cells were highly sensitive to ultraviolet-light (UV light), hydroxyurea (HU) and gamma rays, and were defective in G2/M as well as S/M checkpoints. These data indicated that Mrad1 is required for repairing DNA lesions induced by UV-light, HU and gamma rays, and for mediating G2/M and S/M checkpoint controls. We further demonstrated that Mrad1 plays an important role in homologous recombination repair (HRR) in ES cells, but a minor HRR role in differentiated mouse cells.  相似文献   

2.
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.  相似文献   

3.
RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination. However, the specific pathway(s) in which it is involved and the underlining mechanism(s) remain poorly understood. We took advantage of genetic tools in Drosophila to investigate how Drosophila RecQ5 (dRecQ5) functions in vivo in homologous recombination-mediated double strand break (DSB) repair. We generated null alleles of dRecQ5 using the targeted recombination technique. The mutant animals are homozygous viable, but with growth retardation during development. The mutants are sensitive to both exogenous DSB-inducing treatment, such as gamma-irradiation, and endogenously induced double strand breaks (DSBs) by I-Sce I endonuclease. In the absence of dRecQ5, single strand annealing (SSA) -mediated DSB repair is compromised with compensatory increases in either inter-homologous gene conversion, or non-homologous end joining (NHEJ) when inter-chromosomal homologous sequence is unavailable. Loss of function of dRecQ5 also leads to genome instability in loss of heterozygosity (LOH) assays. Together, our data demonstrate that dRecQ5 functions in SSA-mediated DSB repair to achieve its full efficiency and in suppression of LOH in Drosophila.  相似文献   

4.
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   

5.
Newborn neurons migrate extensively in the radial and tangential directions to organize the developing vertebrate nervous system. We show here that mutations in zebrafish trilobite (tri) that affect gastrulation-associated cell movements also eliminate tangential migration of motor neurons in the hindbrain. In the wild-type hindbrain, facial (nVII) and glossopharyngeal (nIX) motor neurons are induced in rhombomeres 4 and 6, respectively, and migrate tangentially into r6 and r7 (nVII) and r7 (nIX). In all three tri alleles examined, although normal numbers of motor neurons are induced, nVII motor neurons are found exclusively in r4, and nIX-like motor neurons are found exclusively in r6. The migration of other neuronal and nonneuronal cell types is unaffected in tri mutants. Rhombomere formation and the development of other hindbrain neurons are also unaffected in tri mutants. Furthermore, tangential neuronal migration occurs normally in the gastrulation mutant knypek, indicating that the trilobite neuron phenotype does not arise nonspecifically from aberrant gastrulation-associated movements. We conclude that trilobite function is specifically required for two types of cell migration that occur at different stages of zebrafish development.  相似文献   

6.
Disulfide bond-forming (Dsb) protein is a bacterial periplasmic protein that is essential for the correct folding and disulfide bond formation of secreted or cell wallassociated proteins. DsbA introduces disulfide bonds into folding proteins, and is re-oxidized through interaction with its redox partner DsbB. Mycobacterium tuberculosis, a Gram-positive bacterium, expresses a DsbA-like protein ( Rv2969c), an extracellular protein that has its Nterminus anchored in the cell membrane. Since Rv2969c is an essential gene, crucial for disulfide bond formation, research of DsbA may provide a target of a new class of anti-bacterial drugs for treatment of M.tuberculosis infection. In the present work, the crystal structures of theextracellular region of Rv2969c (Mtb DsbA) were determined in both its reduced and oxidized states. The overall structure of Mtb DsbA can be divided into two domains: a classical thioredoxin-like domain with a typical CXXC active site, and an α-helical domain. It largely resembles its Escherichiacoli homologue EcDsbA, however, it possesses a truncated binding groove; in addition, its active site is surrounded by an acidic, rather than hydrophobic surface. In our oxidoreductase activity assay, Mtb DsbA exhibited a different substrate specificity when compared to EcDsbA. Moreover, structural analysis revealed a second disulfide bond in Mtb DsbA, which is rare in the previously reported DsbA structures, and is assumed to contribute to the overall stability of Mtb DsbA. To investigate the disulphide formation pathway in M.tuberculosis, we modeled Mtb Vitamin K epoxide reductase (Mtb VKOR), a binding partner of Mtb DsbA, to Mtb DsbA.  相似文献   

7.
The fungus Trichophyton schoenleinii (T. schoenleinii) is the causative agent of Trichophytosis and Tinea favosa of the scalp in certain regions of Eurasia and Africa. Human innate immune system plays an important role in combating with various pathogens including fungi. The inflammasome is one of the most critical arms of host innate immunity, which is a protein complex controlling maturation of IL-1β. To clarify whether T. schoenleinii is able to activate the inflammasome, we analyzed human monocytic cell line THP-1 for IL-1β production upon infection with T. schoenleinii strain isolated from Tinea favosa patients, and rapid IL-1β secretion from THP-1 cells was observed. Moreover, applying competitive inhibitors and gene specific silencing with shRNA, we found that T. schoenleinii induced IL-1β secretion, ASC pyroptosome formation as well as caspase-1 activation were all dependent on NLRP3. Cathepsin B activity, ROS production and K+ efflux were required for the inflammasome activation by T. schoenleinii. Our data thus reveal that the NLRP3 inflammasome plays an important role in host defense against T. schoenleinii, and suggest that manipulating NLRP3 signaling can be a novel approach for control of diseases caused by T. schoenleinii infection.  相似文献   

8.
Programmed cell death (PCD) plays an important role in plant growth and development as well as in stress responses. During male gametophyte development, it has been proposed that PCD may act as a cellular surveillance mechanism to ensure successful progression of male gametogenesis, and this suicide protective machinery is repressed under favorable growth conditions. However, the regulatory mechanism of male gametophyte-specific PCD remains unknown. Here, we report the use of a TdT-mediated dUTP nick-end labeling-based strategy for genetic screening of Arabidopsis mutants that present PCD phenotype during male gametophyte development. By using this approach, we identified 12 mutants, designated as pcd in male gametogenesis (pig). pig mutants are defective at various stages of male gametophyte development, among which nine pig mutants show a microspore-specific PCD phenotype occurring mainly around pollen mitosis I or the bicellular stage. The PIG1 gene was identified by map-based cloning, and was found to be identical to ATAXIA TELANGIECTASIA MUTATED (ATM), a highly conserved gene in eukaryotes and a key regulator of the DNA damage response. Our results suggest that PCD may act as a general mechanism to safeguard the entire process of male gametophyte development.  相似文献   

9.
The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.  相似文献   

10.
11.
12.
Members of the fibroblast growth factor (Fgf) family are important signaling molecules in several inductive and patterning processes, and act as brain organizer-derived signals during formation of the early vertebrate nervous system. We isolated a new member of the Fgf8/17/18 subgroup of Fgfs from the zebrafish, and studied its expression and function during somitogenesis, optic stalk and midbrain-hindbrain boundary (MHB) development. In spite of a slightly higher aminoacid similarity to Fgf8, expression analysis and mapping to a chromosome stretch that is syntenic with mammalian chromosomes shows that this gene is orthologous to mammalian Fgf17. These data provide a further example of conserved chromosomal organization between zebrafish and mammalian genomes. Using an mRNA injection assay, we show that fgf17 can act similar to fgf8 during gastrulation, when fgf17 is not normally expressed. Direct comparison of the expression patterns of fgf17 and fgf8 suggest however a possible cooperation of these Fgfs at later stages in several tissues requiring Fgf signaling. Analysis of zebrafish MHB mutants demonstrates a gene-dosage dependent requirement of fgf17 expression for the no isthmus// pax2.1 gene, showing that no isthmus/pax2.1 functions upstream of fgf17 at the MHB in a haplo-insufficient manner, similar to what has been reported for mammalian pax2 mutants. In contrast, only maintenance of fgf17 expression is disturbed at the MHB of acerebellar/fgf8 mutants. Consistent with a requirement for fgf8 function, implantation of FGF8-soaked beads induces fgf17 expression, and expression is upregulated in aussicht mutants, which display upregulation of the Fgf8 signaling pathway. Taken together, our results argue that Fgf8 and Fgf17 act as hierarchically organized signaling molecules during development of the MHB organizer and possibly other organizers in the developing nervous system.  相似文献   

13.
14.
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.  相似文献   

15.
Id genes in nervous system development   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
18.
The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation, maintenance, and plasticity, where skeletal muscle-derived GDNF may be responsible for this phenomenon. Increased levels of physical activity can increase GDNF protein levels in skeletal muscle, where alterations in acetylcholine and acetylcholine receptor activation may be involved in regulation of these changes observed. With inactivity and disuse, GDNF expression shows different patterns of regulation in the central and peripheral nervous systems. Due to its potent effects for motor neurons, GDNF is being extensively studied in neuromuscular diseases.  相似文献   

19.
20.
The role of BETA2/NeuroD1 in the development of the nervous system   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号