首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
森林生态系统在陆地碳循环过程中发挥着重要作用,关于温带落叶阔叶林生态系统碳平衡过程影响机制的讨论尚未统一。本研究于2019年对北京松山典型落叶阔叶林生态系统的净碳交换量(NEE)及空气温度(Ta)、土壤温度(Ts)、光合有效辐射(PAR)、饱和水气压差(VPD)、土壤含水量(SWC)、降雨量(P)等环境因子进行原位连续监测,分析松山落叶阔叶林生态系统净碳交换特征及其对环境因子的响应。结果表明: 在日尺度上,NEE生长季(5—10月)各月平均日变化均呈“U”字形变化,日间为碳汇,夜间为碳源。其他月份NEE均为正值,变化平缓,表现为碳源。在季节尺度上,NEE呈单峰曲线变化规律,全年NEE为-111 g C·m-2·a-1,生态系统呼吸总量(Re)为555 g C·m-2·a-1,总生态系统生产力(GEP)为666 g C·m-2·a-1。碳吸收与释放量分别在6月与11月达到最大值。PAR是影响日间净碳交换量(NEEd)的主导因子,二者关系符合Michaelis-Menten模型,VPD是间接影响NEEd的主导因子,最适宜日间净碳交换的VPD范围为1~1.5 kPa。土壤温度是影响夜间净碳交换量(NEEn)的主导因子,SWC是NEEn的限制因子,SWC过高或过低均会对NEEn产生抑制,最适值为0.28 m3·m-3。  相似文献   

2.
温度和水分对科尔沁草甸湿地净生态系统碳交换量的影响   总被引:1,自引:0,他引:1  
基于涡度相关和波文比气象土壤监测系统,研究了2016年科尔沁草甸湿地生态系统生长季5—9月CO2通量的动态变化特征,分析了温度、水分等环境因子与其的响应关系.结果表明:生长季累计净生态系统碳交换量(NEE)为-766.18 g CO2·m-2,总初级生产力(GPP)和生态系统呼吸量(Re)分别为3379.89和2613.71 g CO2·m-2,Re/GPP为77.3%,表现为明显的碳汇.NEE各月平均日变化呈单峰“U”型曲线,其中5—7月和8月中旬表现为吸收CO2,8月后半月和9月表现为释放CO2.日间NEE与光合有效辐射(PAR)呈显著的直角双曲线关系,同时受饱和水汽压差(VPD)、土壤含水量(SWC)和气温(Ta)等环境要素调控.回归关系表明,日间NEE达到最大时,VPD和SWC值分别为1.75 kPa和35.5%,而NEE随Ta增加逐渐增大,当Ta达到最大时,并未对NEE产生抑制作用;夜间NEE随土壤温度(Ts)呈指数趋势上升.在整个生长季,生态系统呼吸的温度敏感性指数(Q10)为2.4,且SWC越高,Q10越小,夜间NEE受Ts和SWC共同调控.  相似文献   

3.
华北低丘山地人工林生态系统净碳交换与气象因子的关系   总被引:4,自引:0,他引:4  
同小娟  张劲松  孟平  尹昌君  高峻  黄辉  国琳 《生态学报》2009,29(12):6638-6645
植树造林使我国森林碳储量显著增加,人工林潜在的碳汇功能不容忽视.基于涡度相关技术,对华北低丘山地30年生栓皮栎-刺槐-侧柏人工混交林生态系统进行了连续2a的碳通量观测,以探讨净碳交换(NEE)与气象因子的关系.结果表明:在主要生长季(4~9月份),夜间日平均NEE(生态系统呼吸)随气温升高呈指数增长(P<0.01).2006年和2007年生态系统呼吸的温度敏感系数(Q_(10))分别为1.92和1.86.气温在10℃以下时,NEE日总量较小.气温超过10℃后,人工林以净吸收大气CO_2为主,且日吸收量随温度升高迅速增加.白天净碳吸收量随光合有效辐射(PAR)增加而增大(P<0.01),可由直角双曲线方程描述;不过,当饱和差(VPD)小于1.0 kPa时,二者呈线性相关(P<0.01).2006年和2007年主要生长季(4~9月份)的平均表观初始光能利用率(α)分别为0.032和0.019,平均最大光合速率(P_(max))分别为0.96mg · m~(-2) · s~(-1)和1.10 mg · m~(-2) · s~(-1).α和P_(max)都存在季节变化.在月尺度,P_(max)与VPD和PAR呈明显的负相关关系(分别为P<0.01和P<0.05),但与气温相关性不显著;α与对应的PAR、气温和VPD均无明显相关关系.  相似文献   

4.
极端高温是影响森林生态系统碳循环重要的极端天气事件之一.本研究利用千烟洲亚热带人工针叶林2003-2012年的CO2通量及常规气象数据,结合小波分析方法,明确极端高温及极端高温事件对该森林生态系统净碳吸收的影响,以及极端高温及事件发生时,不同时间尺度上环境因子对净碳吸收的控制作用.结果表明: 极端高温发生时,日最高气温在35~40 ℃时,会导致该生态系统平均日总净CO2交换量(NEE)较30~34 ℃下降51%;极端高温及极端高温事件对月及年总NEE的影响与极端高温事件发生的强度及持续时间有关,2003年强极端高温事件发生时,7、8两个月总NEE仅为-11.64 g C·m-2·(2 month)-1,较多年平均值下降了90%,使年总NEE的相对变化率达-6.7%.在极端高温及事件发生的7-8月间,气温(Ta)、饱和水汽压差(VPD)是控制NEE日变化的主要环境因子,其相干性分别可达0.97、0.95;在8、16、32 d周期上,Ta、VPD、土壤5 cm处含水量(SWC)及降水量(P)均对NEE有较强的控制作用,在32 d周期上,NEE与SWC、P的相干性超过了0.8.极端高温及事件发生时,短时间尺度上大气干旱影响该森林生态系统的净碳吸收,而长时间尺度上,大气干旱与土壤干旱共同影响该森林生态系统的净碳吸收.  相似文献   

5.
内蒙古温带荒漠草原能量平衡特征及其驱动因子   总被引:3,自引:1,他引:3  
阳伏林  周广胜 《生态学报》2010,30(21):5769-5780
基于内蒙古苏尼特左旗温带荒漠草原生态系统观测站2008年全年的涡度相关观测与相应的生物、环境观测资料,对生态系统能量平衡特征及其驱动因子分析表明:能量平衡各分量(净辐射,Rn;感热通量,H;潜热通量,LE;土壤热通量,G)呈单峰型日动态,白天大部分时间H/RnG/RnLE/Rn;夜间G/Rn占主导;全天LE/Rn相对较小,即使在植物生长盛期。较低的LE/Rn可能与荒漠草原气候干旱及植被分布稀少有关。日Rn受天气变化的影响,特别是在雨季,Rn日间差异较大,呈现锯齿状波动。能量平衡各分量季节变化明显,Rn、H、LE和G最大月分别为7、5、6月份和6月份。全年H是Rn的主要能量支出项(58%);LE其次(26%),年蒸散量(190.3mm)大于年降水量(136.3mm),与多年平均降水量接近(183.9mm),其中最大日蒸散率3.8mm/d;G所占比例较小(1%),全年基本保持平衡。然而G白天吸收能量,夜间释放能量;夏季储存能量,冬季释放能量的特点,在能量平衡中存在类似"能量缓存"的作用,不能被忽略。降水过程显著影响内蒙古温带荒漠草原水热交换。降水后较降水前LE峰值明显增大,而H峰值降低。日蒸散率峰值多数与降水事件有关。而且,生长季日蒸散率波动与降水引起的SWC变化趋势一致。生长季潜热分配(LE/Rn)主要受到土壤含水量(SWC)、饱和水汽压差(VPD)及叶面积指数(LAI)共同影响。LE/Rn随SWC增大呈增加趋势,LE/Rn随VPD增大而降低,LE/Rn随LAI增大呈二次曲线变化。其中LAI为0.2m2/m2是一个阈值,当LAI0.2m2/m2,SWC是LE/Rn主要驱动因子;当LAI0.2m2/m2,SWC和LAI共同驱动LE/Rn。应用退耦因子(Ω)评价了荒漠草原与大气之间水汽交换的耦合状况。与其他草原类型相比,本研究区退耦因子(Ω)相对较低(生长季平均0.15)。生长盛期Ω相对较高,Rn是LE的主导因子;而生长前期和后期Ω相对较低,VPD是LE的主要控制因子。  相似文献   

6.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7—9月)较高、生长初期(5—6月)和生长末期(10—11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

7.
采用涡度相关法,对2011年生长季的黄河三角洲芦苇湿地净生态系统CO2交换(NEE)进行了观测,研究湿地NEE的变化规律及其影响因子.结果表明: 不同月份芦苇湿地的NEE日变化均呈“U”形曲线,CO2最大净吸收率和释放率的日均值分别为(0.44±0.03)和(0.16±0.01) mg CO2·m-2·s-1;芦苇湿地NEE、生态系统呼吸(Reco)、总初级生产力(GPP)的季节变化均呈现生长旺季(7-9月)较高、生长初期(5-6月)和生长末期(10-11月)较低的趋势;Reco和NEE在8月达到峰值,GPP在7月达到峰值.芦苇湿地生态系统的CO2交换受到光合有效辐射(PAR)、土壤温度(Ts)和土壤体积含水量(SWC)的共同影响.白天NEE与PAR呈直角双曲线关系;5 cm深处Ts与夜间生态系统呼吸(Reco,n)呈指数关系,生态系统呼吸的温度敏感性(Q10)为2.30,SWC和Ts是影响芦苇湿地Reco,n的主要因子.在整个生长季,黄河三角洲芦苇湿地生态系统是一个明显的CO2的汇,总净固碳量为780.95 g CO2·m-2.  相似文献   

8.
Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO2 sinks. On the plateau, alpine shrub meadow is one of typical grassland ecosystems. The major alpine shrub on the plateau is Potentilla fruticosa L. (Rosaceae), which is distributed widely from 3 200 to 4 000 m. Shrub species play an important role on carbon sequestration in grassland ecosystems. In addition, alpine shrubs are sensitive to climate change such as global warming. Considering global warming, the biomass and productivity of P. fruticosa will increase on Qinghai-Tibetan Plateau. Thus, understanding the carbon dynamics in alpine shrub meadow and the role of shrubs around the upper distribution limit at present is essential to predict the change in carbon sequestration on the plateau. However, the role of shrubs on the carbon dynamics in alpine shrub meadow remains unclear. The objectives of the present study were to evaluate the magnitude of CO2 exchange of P. fruticosa shrub patches around the upper distribution limit and to elucidate the role of P. fruticosa on ecosystem CO2 fluxes in an alpine meadow.Methods We used the static acrylic chamber technique to measure and estimate the net ecosystem productivity (NEP), ecosystem respiration (R e), and gross primary productivity (GPP) of P. fruticosa shrub patches at three elevations around the species' upper distribution limit. Ecosystem CO2 fluxes and environmental factors were measured from 17 to 20 July 2008 at 3 400, 3 600, and 3 800 m a.s.l. We examined the maximum GPP at infinite light (GPP max) and maximum R e (R emax) during the experimental time at each elevation in relation to aboveground biomass and environmental factors, including air and soil temperature, and soil water content.Important findings Patches of P. fruticosa around the species' upper distribution limit absorbed CO2, at least during the daytime. Maximum NEP at infinite light (NEP max) and GPP max of shrub patches in the alpine meadow varied among the three elevations, with the highest values at 3 400 m and the lowest at 3 800 m. GPP max was positively correlated with the green biomass of P. fruticosa more strongly than with total green biomass, suggesting that P. fruticosa is the major contributor to CO2 uptake in the alpine shrub meadow. Air temperature influenced the potential GPP at the shrub-patch scale. R emax was correlated with aboveground biomass and R emax normalized by aboveground biomass was influenced by soil water content. Potentilla fruticosa height (biomass) and frequency increased clearly as elevation decreased, which promotes the large-scale spatial variation of carbon uptake and the strength of the carbon sink at lower elevations.  相似文献   

9.
Aims Humid savannas, as a result of high precipitation amounts, are highly productive. They are also hotspots for land use change and potential sources of carbon dioxide (CO2) due to the large soil carbon (C) stocks. Understanding how ecosystem CO2 exchange is influenced by changes arising from agricultural land use is vital in future management of these ecosystems and in responding to the ongoing shifts in management and climate. The aim of this study was to identify how ecosystem CO2 exchange and biomass productivity of the herbaceous layer of a humid savanna in Kenya respond to current management practices.Methods We used flux chambers to quantify CO2 fluxes, while monthly harvests were undertaken to determine biomass development of the herbaceous layer of three sites that were (i) fenced to exclude livestock grazing, (ii) subjected to grazing by livestock and (iii) abandoned after being cultivated for maize production and also open to grazing by livestock.Important findings The peak aboveground biomass ranged between 380 and 1449g m ?2 and biomass production was significantly (P < 0.05) lower in the grazed and abandoned plots. The maximum gross primary production (GPP) and net ecosystem CO2 exchange (NEE) ranged between 21.8±1.3 to 32.5±2.7 and ?9.6±0.7 to-17.9±4.8 μmol m ?2 s-1, respectively. Seasonal NEE fluctuations ranged between 10 and 21 μmol m ?2 s-1, while spatial (among sites) differences ranged between 2 and 10 μmol m ?2 s-1. Ecosystem respiration (R eco) fluctuated between 5 and 10 μmol m ?2 s-1 during the growing season. R eco was, however, not significantly different among the sites. Unlike in other similar ecosystems where ecosystem respiration is determined by the ambient temperature, we did not find any relationship between R eco and temperature in this savanna. Instead, soil moisture accounted for 38–88% of the spatial and seasonal fluctuations in ecosystem CO2 fluxes and aboveground biomass production. Management influenced the maximum GPP and NEE rates through modification of soil moisture, plant species composition and aboveground biomass. We concluded that soil moisture is the key determinant of ecosystem CO2 exchange and productivity in this tropical savanna. Management, however, significantly modifies C fluxes and productivity through its influence on soil moisture, plant species composition and aboveground green biomass and should be taken into consideration in future similar studies.  相似文献   

10.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

11.
生态系统光合和呼吸是构成净生态系统CO2交换量(NEE)的重要组分。涡度相关技术可直接观测生态系统NEE,并通过建立温度回归或光响应曲线等函数将NEE统计拆分为生态系统光合和呼吸,但是存在自相关和高估白天呼吸等问题。稳定同位素红外光谱技术的进步使高时间分辨率大气CO2及其稳定碳同位素组成(δ13C)的连续观测成为可能,与涡度相关技术观测的NEE数据相结合,可实现昼夜和季节尺度生态系统光合和呼吸拆分。本文系统阐述了生态系统光合与呼吸的同位素通量拆分方法的基本理论与假设,阐述了同位素通量观测技术的发展及其应用进展,综述了同位素通量拆分理论解析生态系统光合与呼吸过程的新机制认识,最后总结并展望了同位素通量拆分理论的不确定性以及开展多种拆分方法综合比较的必要性。  相似文献   

12.
Aims Kobresia meadows, the dominant species of which differ in different habitats, cover a large area of alpine grassland on the Qinghai-Tibetan Plateau and act as potential CO2 sinks. Kobresia meadows with different dominant species may differ in carbon sink strength. We aimed to test the hypothesis and to clarify the differences in CO2 sink strength among three major Kobresia meadows on the plateau and the mechanisms underlying these differences.Methods We measured the net ecosystem exchange flux (NEE), ecosystem respiration flux (ER), aboveground biomass (AGB) and environmental variables in three Kobresia meadows, dominated by K. pygmaea, K. humilis, or K. tibetica, respectively, in Haibei, Qinghai. NEE and ER were measured by a closed-chamber method. Environmental variables, including photosynthetic photon flux density (PPFD), air and soil temperature and air and soil moisture, were monitored during the above flux measurements.Important findings The measured peak AGB increased with soil water content and was 365, 402 and 434 g dry weight m-2<-sup> for K. pygmaea, K. humilis and K. tibetica meadow, respectively. From the maximum ecosystem photosynthetic rate in relation to PPFD measured during the growing season, we estimated gross ecosystem photosynthetic potential (GEP max) as 22.2, 29.9 and 37.8 μmol CO2 m-2<-sup> s-1 for K. pygmaea, K. humilis and K. tibetica meadow, respectively. We estimated the respective gross primary production (GPP) values as 799, 1-063 and 1?158 g C m-2<-sup> year-1 and ER as 722, 914 and 1-011 g C m-2<-sup> year-1. Average net ecosystem production (NEP) was estimated to be 76.9, 149.4 and 147.6 g C m-2<-sup> year-1 in K. pygmaea, K. humilis and K. tibetica meadows, respectively. The results indicate that (i) the three meadows were CO2 sinks during the study period and (ii) Kobresia meadows dominated by different species can differ considerably in carbon sink strength even under the same climatic conditions, which suggests the importance of characterizing spatial heterogeneity of carbon dynamics in the future.  相似文献   

13.
开垦对克氏针茅草地生态系统碳通量的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
 植被–大气间CO2净交换及其对环境变化的响应是目前全球变化研究的热点问题。该研究通过同化箱式法, 在内蒙古农牧交错带对比研究生长季草地生态系统和耕种多年的小麦田生态系统碳通量的变化, 以探讨该地区碳通量的变化规律及影响碳通量主要因子, 并揭示农田开垦对草原碳通量的影响。结果显示: 两个生态系统的群落净气体交换(Net ecosystem exchange, NEE)有明显的季节变化。整个测定期间, 草地生态系统的净气体交换NEE的最高值为–11.26 µmol CO2&#8226;m–2&#8226;s–1, 平均群落净气体交换为–5.33 µmol CO2&#8226;m–2&#8226;s–1; 小麦田群落NEE最大值为–12.29 µmol CO2&#8226;m–2&#8226;s–1, 平均群落净气体交换为–7.66 µmol CO2&#8226;m–2&#8226;s–1。分析发现, 叶面积指数LAI是影响该地区生态系统NEE的主要因子, 相对贫瘠的土壤也是限制该地区生态系统碳固定的一个重要因子。因小麦的生长特性, 在生长中后期, 小麦田生态系统NEE随LAI的变化没有草地生态系统的敏感。此外, 较低的土壤含水量限制了小麦田群落呼吸, 使得小麦田群落呼吸对温度的敏感性降低。  相似文献   

14.
李愈哲  樊江文  胡中民  邵全琴 《生态学报》2018,38(22):8194-8204
为了解管理利用方式变化对原本以放牧利用为主的草地生态系统的碳交换及碳平衡将产生怎样的影响。在中国北方温性草原区域利用连接同化箱的便携式红外分析系统,在相互毗连的地块调查了3种典型草地管理利用方式植被生长旺季的生态系统碳交换及其精细组分。结果表明,相比放牧草地,开垦农用显著降低生态系统的日均碳交换(下降56%,P0.05),而长期围封也趋向降低生态系统的日均碳交换,但变化并不显著(P0.05)。与之近似,NPP在放牧与禁牧草地间差异不显著,开垦农用使NPP显著下降,但降幅小于NEP。GPP在3种管理利用方式间差异相对较小。生态系统总呼吸、自养、异养、地上和地下呼吸在放牧和禁牧草地间均无显著差异,均显著低于开垦后的麦田,根系呼吸在3种管理利用方式间无显著变化。相比草地放牧,草地开垦显著增加自养呼吸在总呼吸中的占比,而土壤呼吸和根系呼吸的占比均显著下降,禁牧对呼吸组成的影响不明显。不同管理利用方式草地的地下生物量能很好的解释土壤呼吸占比(95%)和根系呼吸占比(77%)的变化,而LAI则与自养呼吸占比显著正相关(P0.001)。草地开垦利用增强生态系统的碳释放、减少CO_2固定,相比开垦农用,禁牧对放牧草地碳交换及其组分的影响相对较小。  相似文献   

15.
Nitrogen effects on net ecosystem carbon exchange in a temperate steppe   总被引:5,自引:0,他引:5  
It has widely been documented that nitrogen (N) enrichment stimulates plant growth and net primary production. However, there is still dispute on how N addition affects net ecosystem CO2 exchange (NEE), which represents the balance between ecosystem carbon (C) uptake and release. We conducted an experimental study to examine effects of N addition on NEE in a temperate steppe in northern China from 2005 to 2008. N was added at a rate of 10 g N m−2 yr−1 with NH4NO3 alone or in combination with phosphorous (P, 5 g P2O5 m−2 yr−1) in both clipped and unclipped plots. Over the 4 years, N addition significantly stimulated growing-season NEE, on average, by 27%. Neither the main effects of P addition or clipping nor their interactions with N addition were statistically significant on NEE in any of the 4 years. However, the magnitude of N stimulation on NEE declined over time. N addition significantly increased NEE by 60% in 2005 and 21% in 2006, but its effect was not significant in 2007 and 2008. N-induced shift in species composition was primarily responsible for the declined N stimulation over time. The gradually increasing coverage of the upper canopy species ( Stipa krylovii ) and standing litter accumulation induced light limitation on the lower canopy species ( Artemisia frigida ). Thus, N-induced shifts in plant species composition strongly regulated the direct effects of N addition on C sequestration in the temperate steppe.  相似文献   

16.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

17.
Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change‐carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site‐years of data) in mid‐ and high‐latitude forests to investigate the temperature response of NEE. Years were divided into two half thermal years (increasing temperature in spring and decreasing temperature in autumn) using the maximum daily mean temperature. We observed a parabolic‐like pattern of NEE in response to temperature change in both the spring and autumn half thermal years. However, at similar temperatures, NEE was considerably depressed during the decreasing temperature season as compared with the increasing temperature season, inducing a counter‐clockwise hysteresis pattern in the NEE–temperature relation at most sites. The magnitude of this hysteresis was attributable mostly (68%) to gross primary production (GPP) differences but little (8%) to ecosystem respiration (ER) differences between the two half thermal years. The main environmental factors contributing to the hysteresis responses of NEE and GPP were daily accumulated radiation. Soil water content (SWC) also contributed to the hysteresis response of GPP but only at some sites. Shorter day length, lower light intensity, lower SWC and reduced photosynthetic capacity may all have contributed to the depressed GPP and net carbon uptake during the decreasing temperature seasons. The resultant hysteresis loop is an important indicator of the existence of limiting factors. As such, the role of radiation, LAI and SWC should be considered when modeling the dynamics of carbon cycling in response to temperature change.  相似文献   

18.
Aims Data assimilation is a useful tool to extract information from large datasets of the net ecosystem exchange (NEE) of CO2 obtained by eddy-flux measurements. However, the number of parameters in ecosystem models that can be constrained by eddy-flux data is limited by conventional inverse analysis that estimates parameter values based on one-time inversion. This study aimed to improve data assimilation to increase the number of constrained parameters.Methods In this study, we developed conditional Bayesian inversion to maximize the number of parameters to be constrained by NEE data in several steps. In each step, we conducted a Bayesian inversion to constrain parameters. The maximum likelihood estimates of the constrained parameters were then used as prior to fix parameter values in the next step of inversion. The conditional inversion was repeated until there were no more parameters that could be further constrained. We applied the conditional inversion to hourly NEE data from Harvard Forest with a physiologically based ecosystem model.Important findings Results showed that the conventional inversion method constrained 6 of 16 parameters in the model while the conditional inversion method constrained 13 parameters after six steps. The cost function that indicates mismatch between the modeled and observed data decreased with each step of conditional Bayesian inversion. The Bayesian information criterion also decreased, suggesting reduced information loss with each step of conditional Bayesian inversion. A wavelet analysis reflected that model performance under conditional Bayesian inversion was better than that under conventional inversion at multiple time scales, except for seasonal and half-yearly scales. In addition, our analysis also demonstrated that parameter convergence in a subsequent step of the conditional inversion depended on correlations with the parameters constrained in a previous step. Overall, the conditional Bayesian inversion substantially increased the number of parameters to be constrained by NEE data and can be a powerful tool to be used in data assimilation in ecology.  相似文献   

19.
Understanding carbon dynamics of switchgrass ecosystems is crucial as switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange (NEE) and its components – gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) – in response to controlling factors during the second (2011) and third (2012) years of stand establishment in the southern Great Plains of the United States (Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light–response curve (NEE partitioning algorithm) consistently failed to provide good fits at high VPD. Modified rectangular hyperbolic light–VPD response model accounted for the limitation of VPD on photosynthesis and improved the model performance significantly. The maximum monthly average NEE reached up to ?33.02 ± 1.96 μmol CO2 m?2 s?1 and the highest daily integrated NEE was ?35.89 g CO2 m?2 during peak growth. Although large differences in cumulative seasonal GEP and ER were observed between two seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing season lengths and differences in aboveground biomass production. It suggests that net ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of CO2 during 5–6 months and total seasonal uptakes were ?1128 ± 130 and ?1796 ± 217 g CO2 m?2 in 2011 and 2012, respectively. In conclusion, our findings suggest that the annual carbon status of a switchgrass ecosystem can be a small sink to small source in this region if carbon loss from biomass harvesting is considered. However, year‐round measurements over several years are required to assess a long‐term source‐sink status of the ecosystem.  相似文献   

20.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号