首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Anaerobe》2009,15(6):261-265
Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.  相似文献   

2.
《Anaerobe》2000,6(1):15-19
One hundred and fifty-five stool specimens of patients suspected for Clostridium difficile -associated diarrhoea, colitis or pseudomembranous colitis (PMC) were investigated. All patients were pre-treated with antibiotics, suffered from watery diarrhoea and abdominal pain and were hospitalized in different hospital units. Units varied from departments of surgery, internal medicine, intensive care, paediatry, dermatology, orthopaedy to gastroenterology. Fifty C. difficile strains were isolated from the faecal samples. Clostridium difficile toxin detection was done directly in the stool samples, and also in cultured C. difficile strains (in vivo and in vitro, respectively). We observed clear differences between in vivo and in vitro toxin A detection by using commercial rapid immuno-enzymatic tests: from 25 in vivo toxin A-negative samples, 17 were positive in vitro. This observation suggests that culturing of C. difficile on selective medium is mandatory for adequate toxin detection and necessary for confirming the presence of toxin-producing C. difficile. This is especially important among patients with clinical symptoms and history of pretreatment with antibiotics and when in vivo toxin A detection is negative. It was established that toxin gene detection by PCR is optimal and PCR results were concordant with results of other in vitro assays. Genotyping by using AP-PCR and PCR ribotyping showed heterogeneity among the toxigenic C. difficile strains cultured from in vivo toxin A-negative stool samples.  相似文献   

3.
《Anaerobe》1999,5(3-4):217-219
Fifty faecal samples of patients suspected of having diarrhoea associated with Clostridium difficile were studied. Toxins of C. difficile were tested in vivo directly from the faecal sample using Toxin Detection Kits (Oxoid) to detect toxin A and primers for detection genes of Toxin A and B in a PCR test. The same samples were tested for B. fragilis enterotoxin gene directly from the faecal sample using special primers and a PCR test. Samples were inoculated onto selective media for C. difficile (CCCA) and B. fragilis (BBE) for isolation of bacteria.In vitro Toxin A of C. difficile in culture was tested using a C. difficile toxin A immunoassay (Oxoid, U.K. test and Toxin B of C. difficile was tested by using the McCoy cell line. C. difficile toxin A and B genes were determined in DNA of isolated strains using special primers and a PCR reaction. The enterotoxin production in B. fragilis strains was tested on the human carcinoma cell line HT29/C1. The presence of fragilysin gene was detected using a special pair of primers and a PCR reaction. Toxinogenic strains of C. difficile and enterotoxigenic Bacteroides fragilis (ETBF) strains were isolated from the same samples.  相似文献   

4.
Clostridium difficile is an important enteric pathogen of humans and the cause of diarrhea and enteritis in neonatal pigs. Outside Australia, prevalence in piglets can be up to 73%, with a single PCR ribotype (RT), 078, predominating. We investigated the prevalence and genotype of C. difficile in Australian pig herds. Rectal swabs (n = 229) were collected from piglets aged <7 days from 21 farms across Australia. Selective culture for C. difficile was performed and isolates characterized by PCR for toxin genes and PCR ribotyping. C. difficile was isolated from 52% of samples by direct culture on chromogenic agar and 67% by enrichment culture (P = 0.001). No association between C. difficile recovery or genotype and diarrheic status of either farm or piglets was found. The majority (87%; 130/154) of isolates were toxigenic. Typing revealed 23 different RTs, several of which are known to cause disease in humans, including RT014, which was isolated most commonly (23%; 36/154). RT078 was not detected. This study shows that colonization of Australian neonatal piglets with C. difficile is widespread in the herds sampled.  相似文献   

5.
Clostridioides difficile infection (CDI) has become a threatening public health problem in the developed world. In the kingdom of Saudi Arabia, prevalence of CDI is still unknown due to limited surveillance protocols and diagnostic resources. We used a two-step procedure to study and confirm C. difficile cases. We also studied toxin profiles of these isolates.Stool samples were collected from symptomatic patients and clinically suspected of CDI for almost 12 months. Isolates were confirmed by culture method followed by 16S rRNA sequencing. Multiplex PCR was performed for the identification of toxin A, toxin B and binary toxin genes and compared to Gene Expert results.Out of the 47 collected samples, 27 were successfully grown on culture media. 18 samples were confirmed as C. difficile by both culture and 16S rRNA sequencing. Interestingly, the rest of the isolates (9 species) belonged to different genera. Our results showed 95% of samples were positive for both toxin A and B (tcdA, tcdB) and all samples exhibited the toxin gene regulator tcdC. All samples were confirmed negative for the binary toxin gene ctdB and 11% of the isolates were positive for ctdA gene. Interestingly, one isolate harbored the binary toxin gene (cdtA+) and tested negative for both toxins A and B.We believe that combining the standard culture method with molecular techniques can make the detection of C. difficile more accurate.  相似文献   

6.

Background

Community-associated Clostridium difficile infection (CDI) appears to be an increasing problem. Reported carriage rates by C.difficile are debatable with suggestions that primary asymptomatic carriage is associated with decreased risk of subsequent diarrhoea. However, knowledge of potential reservoirs and intestinal carriage rates in the community, particularly in the elderly, the most susceptible group, is limited. We have determined the presence of C.difficile in the faeces of a healthy elderly cohort living outside of long-term care facilities (LCFs) in the United Kingdom.

Methods

Faecal samples from 149 community-based healthy elderly volunteers (median age 81 years) were screened for C.difficile using direct (Brazier''s CCEY) and enrichment (Cooked Meat broth) culture methods and a glutamate dehydrogenase (GDH) immunoassay. Isolates were PCR-ribotyped and analysed for toxin production and the presence of toxin genes.

Results

Of 149 faecal samples submitted, six (4%) were found to contain C.difficile. One particular sample was positive by both the GDH immunoassay and direct culture, and concurrently produced two distinct strain types: one toxigenic and the other non-toxigenic. The other five samples were only positive by enrichment culture method. Overall, four C.difficile isolates were non-toxigenic (PCR-ribotypes 009, 026 (n = 2) and 039), while three were toxigenic (PCR-ribotypes 003, 005 and 106). All individuals who had a positive culture were symptom-free and none of them had a history of CDI and/or antibiotics use in the 3 month period preceding recruitment.

Conclusions

To our knowledge, this is the first study of the presence of C.difficile in healthy elderly community-dwelling individuals residing outside of LCFs. The observed carriage rate is lower than that reported for individuals in LCFs and interestingly no individual carried the common epidemic strain PCR-ribotype 027 (NAP1/BI). Further follow-up of asymptomatic carriers in the community, is required to evaluate host susceptibility to CDI and identify dynamic changes in the host and microbial environment that are associated with pathogenicity.  相似文献   

7.
《Anaerobe》2009,15(6):270-273
There has been renewed interest in the laboratory diagnosis of Clostridium difficile infections due in large measure to the increase in both numbers and severity of cases of this disease. For the past two decades, enzyme-immunoassays (EIAs) for the detection of first C. difficile toxin A and then toxins A and B have been the most widely used diagnostic test for diagnosis of C. difficile infections. Recently this diagnostic approach has been called into question by the recognition that a screening test which detects glutamate dehydrogenase, a cell wall antigen of C. difficile, was significantly more sensitive than toxins A and B EIAs making it an effective screening test for C. difficile infection. Although sensitive, GDH lacks specificity and so if this test was utilized, a confirmatory test to differentiate false positives from true positives was needed. Studies to date have used cytotoxin neutralization or toxigenic culture as confirmatory tests but both of these have their limitations. A testing algorithm using rapid immunochromatographic devices for detection of GDH and toxins A and B as screening tests will give an accurate test result in approximately 90% of specimens within one hour when using cytotoxin neutralization as a reference method. For the other 10% of specimens, a third test would be needed in the algorithm. This test could be cytotoxin neutralization, toxigenic culture, or PCR for toxin or toxin operon genes.  相似文献   

8.
Clostridium difficile is the etiological agent of diarrhoea and colitis, especially in elderly patients. The incidence of these diseases has increased during the last 10 years. Emergence of so-called hypervirulent strains is considered as one of the main factors responsible for the more severe disease and changed profile of sensitivity to antimicrobial agents. The aim of this work was to determine the sensitivity profile of toxigenic strains of C. difficile in the Czech Republic in 2011–2012 to selected antibiotics. The antibiotics clindamycin, metronidazole, vancomycin and amoxicillin with clavulanic acid were used for this purpose. Isolates cultured on Brazier's C. difficile selective agar were analysed for the presence of toxin genes using Xpert detection system. Xpert analysis revealed that 33 strains carried the genes for toxins tcdB, cdt and tcdCΔ117, thus showing characteristics typical for the hypervirulent ribotype 027/PFGE type NAP1/REA type B1. The remaining 29 strains carried only the gene for toxin B (tcdB) and not cdt and tcdCΔ117. Our results indicate the higher susceptibility of C. difficile hypertoxigenic strains to three out of four tested antibiotics (except vancomycin) than it is for the other toxigenic strains. We found that only 10.34 % of other toxigenic strains were resistant to clindamycin, and no resistance was found in all other cases. All the isolates were sensitive to amoxicillin/clavulanic acid in vitro. However, its use is not recommended for therapy of infections caused by C. difficile.  相似文献   

9.
Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment.  相似文献   

10.
Background:Clostridium difficile has been shown to be a nosocomial infection associated with diarrhoea and pseudomembranous colitis in hospitalized patients especially old patients. In my previous studies, it was shown the occurrence of C. difficile in animals feces and vegetables which may act as a source of infection to humans.The aim of the study was to determine the prevalence of C. difficile in retail raw cow, sheep, and goat, meat in Jazan, Saudi Arabia.Method: A total of 600 raw meat samples from cow, sheep, and goat were collected during June–December 2015, and tested for the presence of C. difficile. The method used to check for the presence of C. difficile was by choosing selective enrichment media in C. difficile broth, followed by alcohol shock-treatment and plating onto C. difficile selective medium. C. difficile isolates were typed using PCR ribotyping and also analyzed for antibiotic susceptibility.Results: It was shown that, 9 of 600 meat samples (1.5%) were contaminated with C. difficile. The prevalence of C. difficile was as follow: 7 out of 600 (1.17%) were found in cow, 2 out of 600 (0.3%) were found in sheep, while was no C. difficile was isolated from goat. Eleven out of 18 C. difficile isolates were positive for tcdA, tcdB and cdtB toxin genes and were classified as ribotype 078. Three strains were positive tcdA, and tcdB, and two strains possessed only tcdB. C. difficile strains showed high resistance to ampicillin, gentamycin, erythromycin and nalidixic acid.Conclusions: The present work shows the potential risk of raw meet in transmitting C. difficile to humans.  相似文献   

11.
Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value <0.05) among the three groups, regardless of patient characteristics, duration of the disease, antibiotic therapy and medical history. This classification is associated with differences in the production of distinct molecules with presumptive global importance in the gut environment, disease progression and inflammation. Moreover, although severe impaired metabolite production and biological deficits were associated with the carriage of C. difficile that did not produce toxins, only previously unrecognised selective features, namely, choline- and acetylputrescine-deficient gut environments, characterised the carriage of toxin-producing C. difficile. Additional results showed that the changes induced by C. difficile become marked at the highest level of the functional hierarchy, namely the metabolic activity exemplified by the gut microbial metabolome regardless of heterogeneities that commonly appear below the functional level (gut bacterial composition). We discuss possible explanations for this effect and suggest that the changes imposed by CDAD are much more defined and predictable than previously thought.  相似文献   

12.
13.
Toxin production is a central issue in the pathogenesis of Clostridium difficile and many other pathogenic microorganisms. Toxin synthesis is influenced by a variety of known and unknown factors of genetics, physiology, and environment. To facilitate the study of toxin production by C. difficile, we have developed a new, reliable, quantitative, and robust cell-based cytotoxicity assay. Then we combined this new assay with Phenotype MicroArrays (PM) technology which provides high throughput testing of culture conditions. This allowed us to quantitatively measure toxin production by C. difficile type strain ATCC 9689 under 768 culture conditions. The culture conditions include different carbon, nitrogen, phosphorus, and sulfur sources. Among these, 89 conditions produced strong toxin induction and 31 produced strong toxin repression. Strong toxin inducers included adenine, guanosine, arginine dipeptides, γ-D-Glu-Gly, methylamine, and others. Some leucine dipeptides and the triple-leucine tripeptide were among the strongest toxin repressors. While some results are consistent with previous observations, others are new observations that provide insights into toxin regulation and pathogenesis of C. difficile. Additionally, we have demonstrated that this combined assay technology can be applied broadly to a wide range of toxin producing microorganisms. This study is the first demonstration of simultaneous assessment of a large number of culture conditions influencing bacterial toxin production. The new functional cytotoxin quantitation method developed provides a valuable tool for studying toxigenic microorganisms and may also find applications in clinical and epidemiological research.  相似文献   

14.
Recently, Clostridium difficile has been isolated from a wide variety of animals, particularly production animals, mainly cattle and pigs. Concurrently, the incidence of C. difficile infection (CDI) in humans has increased in the community, with some suggestions that food-borne transmission of C. difficile is occurring. Interestingly, sheep and lambs appear not to have been investigated for carriage/colonization with C. difficile. The aim of this project was to determine the prevalence of carriage of C. difficile in sheep and lambs in Australia by culturing fecal samples. A total of 371 sheep and lamb fecal samples were received in seven batches from three different geographic areas in eastern Australia and two in Western Australia. The overall rate of detection in sheep and lambs was low (4.0%); however, carriage/colonization in lambs (6.5%) was statistically significantly higher than that in sheep (0.6%) (P = 0.005). Seven distinct PCR ribotype patterns were observed, three of which were known international ribotypes (UK 056 [n = 1], UK 101 [n = 6], and UK 137 [n = 2]), while the remainder were unable to be matched with our available reference library. This low rate of carriage/colonization in Australian ovines suggests they are unlikely to be a major source/reservoir of human infections.  相似文献   

15.
Clostridium difficile is the primary aetiological agent of antibiotic-associated diarrhoea. The faecal lactoferrin (FL) assay is a simple in vitro test which is highly sensitive to the presence of a marker of polymorphonuclear cells. We evaluated the use of the FL assay in conjunction with the C. difficile toxin assay in faecal samples obtained from 231 adult patients. The relationship between C. difficile toxin and FL in both negative and positive status was highly significant statistically (P < 0.001). Therefore, the FL assay performed simultaneously with the C. difficile toxin assay can help rule out asymptomatic carriage of C. difficile.  相似文献   

16.
The Verigene Clostridium difficile Nucleic Acid Test (Verigene CDF Test) (Nanosphere, Northbrook, IL, USA) is a new multiplex qualitative polymerase chain reaction (PCR) test used to detect C. difficile toxin genes in fecal specimens. To evaluate the performance of the new method, we tested 69 fecal samples from patients with suspected C. difficile infection using the Verigene CDF test, an enzyme immunoassay (EIA) and PCR following anaerobic fecal culture. The sensitivity, specificity, and accuracy of the Verigene CDF test were 96.7% (29/30), 97.4% (38/39), and 97.1% (67/69) respectively, using PCR following fecal culture as a reference method. We also analyzed the potential clinical impact of the Verigene CDF test using chart reviews of the 69 patients with suspected C. difficile infection and found that 11 of the 69 patients were incorrectly diagnosed, and the Verigene CDF test would have led to them receiving more appropriate management including practice of treatment and contact precaution, although, of the 69 patients, there are two whose samples were incorrectly identified with the Verigene CDF test. The Verigene CDF test will have a positive impact on patient care.  相似文献   

17.
YP Hung  PJ Tsai  KH Hung  HC Liu  CI Lee  HJ Lin  YH Wu  JJ Wu  WC Ko 《PloS one》2012,7(8):e42415

Background

The impact of toxigenic Clostridium difficile colonization (tCDC) in hospitalized patients is not clear.

Aim

To study the significance of tCDC in hospitalized patients.

Methods

A prospective study in the medical wards of a regional hospital was performed from January to June 2011. Fecal samples collected from patients at the time of admission were tested for tcdB by real-time polymerase chain reaction (PCR) and cultured for C. difficile. The patients were followed up weekly or when they developed diarrhea during hospitalization. If C. difficile was isolated, tcdA and tcdB would be tested by multiplex PCR. The primary outcome was the development of C. difficile-associated diarrhea (CDAD).

Findings

Of 168 patients enrolled, females predominated (87, 51.8%), and the mean patient age was 75.4 years old. Approximately 70% of the patients were nursing home residents, and one third had a recent hospitalization within the prior three months. Twenty-eight (16.7%) patients had tCDC, including 16 (9.5%) patients with tCDC at the time of admission and 12 (7.2%) with tCDC during the follow-up period. With regard to the medications taken during hospitalization, the patients were more likely to have tCDC if they had received more than one class of antibiotics than if they had received monotherapy (odds ratio [OR] 6.67, 95% confidence interval [CI] 1.41–31.56, P = 0.01), particularly if they received a glycopeptide in combination with a cephalosporin or penicillin or a cephalosporin and a carbapenem. More patients with tCDC developed CDAD than those without tCDC (17.9%, 5/28 vs. 1.4%, 2/140, P = 0.002). Overall 7 (4.2%) of the 168 patients developed CDAD, and crude mortality rate of those with and without tCDC was similar (21.4%, 6/28 vs. 19.4%, 27/140, P = 0.79).

Conclusion

Recent use of glycopeptides and β-lactam antibiotics is associated with toxigenic C. difficile colonization, which is a risk factor for developing C. difficile-associated diarrhea.  相似文献   

18.
A prospective study was conducted to investigate the incidence, clinical profiles and outcome of ICU-onset CDI in a 50-bed medical ICU at a university hospital in China. Stools were collected from patients who developed ICU-onset diarrhea and was screened for tcdA (toxin A gene) and tcdB (toxin B gene) by PCR. CDI cases were compared with the ICU-onset non-CDI diarrhea cases for demographics, comorbidities, potential risk factors, major laboratory findings and outcomes. Stool samples from CDI cases were subjected to C. difficile culture and C. difficile isolates were screened for tcdA, tcdB and the binary toxin genes (cdtA and cdtB) using multiplex PCR. Strain typing of toxigenic C. difficile isolates was performed using multilocus sequence typing. There were 1,277 patients in the ICU during the study period and 124 (9.7%) developed ICU-onset diarrhea, of which 31 patients had CDI. The incidence of ICU-onset CDI was 25.2 cases per 10,000 ICU days. ICU-onset CDI cases had similar features with ICU-onset non-CDI diarrhea cases including the use of proton pump inhibitors and antibacterial agents. The crude mortality rate of ICU-onset CDI was 22.6%, but the attributable mortality rate of ICU-onset CDI was only 3.2% here. Toxigenic C. difficile isolates were recovered from 28 out of the 31 patients with CDI. cdtA and cdtB were found in two strains. Seventeen STs including 11 new STs were identified. All of the 11 new STs were single-locus variants of known STs and the 17 STs identified here could be clustered into 3 clades. The incidence of ICU-onset CDI here is similar to those in Europe and North America, suggesting that CDI is likely to be a common problem in China. Toxigenic C. difficile here belonged to a variety of STs, which may represent a significant clonal expansion rather than the true clonal diversity.  相似文献   

19.
Clostridium difficile can cause antibiotic-associated diarrhoea or pseudo-membranous colitis in humans and animals. Currently, the various methods such as microbiological culture, cytotoxic assay, ELISA and polymerase chain reaction have been used to detect Clostridium difficile infection (CDI). These conventional methods, however, require long detection time and professional staff. The paper is to describe a simple strategy which employs immunomagnetic separation and aptamer-mediated colorimetric assay for the detection of toxin B of C. difficile (TcdB) in the stool samples. HRP-labelled aptamer against TcdB selected by SELEX was firstly captured on the surface of magnetic beads (MB) by DNA hybridization with a complementary strand. In the presence of TcdB, aptamer specifically recognized and bound TcdB, disturbing the DNA hybridization and causing the release of HRP-aptamer from MB. This reduced the catalytic capacity of HRP and consequently the absorption intensity. As there was a relationship between the decrease in the absorption intensity and target concentration, a quantitative analysis of TcdB can be accomplished by the measurement of the absorption intensity. Under the optimal conditions, the assay system is able to detect TcdB at a concentration down to 5 ng ml−1. Moreover the method had specificity of 97% and sensitivity of 66% and the system remained excellent stability within 4 weeks. The proposed method is a valuable screening procedure for CDI and can be extended readily to detection of other clinically important pathogens.  相似文献   

20.
Clostridium difficile infections (CDI) are caused by colonization and growth of toxigenic strains of C. difficile in individuals whose intestinal microbiota has been perturbed, in most cases following antimicrobial therapy. Determination of the protective commensal gut community members could inform the development of treatments for CDI. Here, we utilized the lethal enterocolitis model in Syrian golden hamsters to analyze the microbiota disruption and recovery along a 20-day period following a single dose of clindamycin on day 0, inducing in vivo susceptibility to C. difficile infection. To determine susceptibility in vitro, spores of strain VPI 10463 were cultured with and without soluble hamster fecal filtrates and growth was quantified by quantitative PCR and toxin immunoassay. Fecal microbial population changes over time were tracked by 16S ribosomal RNA gene analysis via V4 sequencing and the PhyloChip assay. C. difficile culture growth and toxin production were inhibited by the presence of fecal extracts from untreated hamsters but not extracts collected 5 days post-administration of clindamycin. In vitro inhibition was re-established by day 15, which correlated with resistance of animals to lethal challenge. A substantial fecal microbiota shift in hamsters treated with antibiotics was observed, marked by significant changes across multiple phyla including Bacteroidetes and Proteobacteria. An incomplete return towards the baseline microbiome occurred by day 15 correlating with the inhibition of C. difficile growth in vitro and in vivo. These data suggest that soluble factors produced by the gut microbiota may be responsible for the suppression of C. difficile growth and toxin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号