首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
RhoGTPases play important roles in the regulation of protein transport and membrane recycling. Little is known, however, about how RhoGTPases affect HIV-1 virion production, which is dependent on the endosomal sorting pathway. We report that ectopic expression of citron kinase (citron-K), a RhoA effector, preferentially enhances HIV-1 virion production. Depletion of endogenous citron-K inhibits HIV-1 virion production. Citron-N, which lacks the kinase domain, also enhances HIV-1 virion production. The leucine zipper, Rho-binding and zinc finger domains of citron-N are necessary for the enhancement activity. Citron-K also enhances murine leukemia virion production and the HIV-1 late domain is not required for the citron-K-mediated enhancement. Ectopic expression of citron-K leads to the formation of cytoplasmic structures containing citron-K and HIV-1 Gag proteins. HIV-1 and citron-K cooperatively enhance acidic endosome and lysosome compartments. Finally, citron-K promotes exocytosis of microvesicles or exosomes that co-purify with HIV-1 virions. We conclude that citron-K enhances HIV-1 virion production by stimulating the endosomal compartments and exocytosis.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) Gag protein recruits Tsg101 to facilitate HIV-1 particle budding and release. In uninfected cells, the Hrs protein recruits the ESCRT-I complex to the endosome, also through an interaction with Tsg101, to promote the sorting of host proteins into endosomal vesicles and multivesicular bodies. Here, we show that the overexpression of the C-terminal fragment of Hrs (residues 391 to 777) or Hrs mutants lacking either the N-terminal FYVE domain (mutant dFYVE) or the PSAP (residues 348 to 351) motif (mutant ASAA) all efficiently inhibit HIV-1 Gag particle production. Expression of the dFYVE or ASAA mutants of Hrs had no effect on the release of Moloney murine leukemia virus. Coimmunoprecipitation analysis showed that the expression of Hrs mutant dFYVE or ASAA significantly reduced or abolished the HIV-1 Gag-Tsg101 interaction. Yeast-two hybrid assays were used to identify two new and independent Tsg101 binding sites, one in the Hrs coiled-coil domain and one in the proline/glutamic acid-rich domain. Scanning electron microscopy of HeLa cells expressing HIV-1 Gag and the Hrs ASAA mutant showed viral particles arrested in "lump-like" structures that remained attached to the cell surface. Together, these data indicate that fragments of Hrs containing the C-terminal portion of the protein can potently inhibit HIV-1 particle release by efficiently sequestering Tsg101 away from the Gag polyprotein.  相似文献   

3.
Hrs is an early endosomal protein that is tyrosine-phosphorylated in cells stimulated with growth factors. Hrs is thought to play a regulatory role in endocytosis of growth factor-receptor complexes through early endosomes. Early endosomal localization of Hrs seems to be essential for Hrs to exert its function in the endocytosis. Hrs has a FYVE finger domain that binds specifically to phosphatidylinositol 3-phosphate in vitro. The FYVE finger is a likely domain that mediates membrane association of endosomal proteins. In this study, we examined whether the FYVE finger participates in early endosomal targeting of Hrs. Hrs with a zinc binding-defective FYVE finger was still localized to early endosomes. In addition, the N-terminal FYVE finger-containing fragment of Hrs showed a cytosolic distribution in mammalian cells. These results indicate that the FYVE finger is not required for the localization of Hrs to early endosomes. Furthermore, by analyzing a series of deletion mutants of Hrs, we identified a sequence of about 100 amino acids within the C-terminal proline- and glutamine-rich region as a domain essential for the targeting of Hrs to early endosomes.  相似文献   

4.
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes.  相似文献   

5.
Cabezas A  Pattni K  Stenmark H 《Gene》2006,371(1):34-41
Yeast Fab1 is a phosphatidylinositol 3-phosphate 5-kinase involved in endocytic membrane traffic and vacuole homeostasis. Here we have cloned and sequenced the cDNA for the human homologue of Fab1, PIKfyve. The cDNA has an open reading frame of 6294 bp and encodes a 2098-amino acid protein with a calculated molecular mass of 237 kDa, containing a phosphatidylinositol 3-phosphate-binding FYVE domain, a DEP domain, a chaperonin-like domain, and a phosphoinositide kinase domain. The human genome contains a single PIKfyve gene, which comprises 38 exons on chromosomal locus 2q34. PIKfyve is expressed as a single molecular species in a number of human cell lines derived from different tissues. The exogenously expressed protein was found to localize mainly to early endosomes containing two other FYVE domain proteins, EEA1 and Hrs. The endosomal membrane localization of PIKfyve was studied in more detail by examining cells transfected with a constitutively active mutant of the small GTPase Rab5, whose expression results in the enlargement of early endosomes. We show that PIKfyve is distributed in microdomains that are distinct from those occupied by EEA1 and Hrs.  相似文献   

6.
HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein   总被引:14,自引:0,他引:14  
The HIV-1 Gag protein recruits the cellular factor Tsg101 to facilitate the final stages of virus budding. A conserved P(S/T)AP tetrapeptide motif within Gag (the "late domain") binds directly to the NH2-terminal ubiquitin E2 variant (UEV) domain of Tsg101. In the cell, Tsg101 is required for biogenesis of vesicles that bud into the lumen of late endosomal compartments called multivesicular bodies (MVBs). However, the mechanism by which Tsg101 is recruited from the cytoplasm onto the endosomal membrane has not been known. Now, we report that Tsg101 binds the COOH-terminal region of the endosomal protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs; residues 222-777). This interaction is mediated, in part, by binding of the Tsg101 UEV domain to the Hrs 348PSAP351 motif. Importantly, Hrs222-777 can recruit Tsg101 and rescue the budding of virus-like Gag particles that are missing native late domains. These observations indicate that Hrs normally functions to recruit Tsg101 to the endosomal membrane. HIV-1 Gag apparently mimics this Hrs activity, and thereby usurps Tsg101 and other components of the MVB vesicle fission machinery to facilitate viral budding.  相似文献   

7.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a prominent substrate for activated tyrosine kinase receptors that has been proposed to play a role in endosomal membrane trafficking. The protein contains a FYVE domain, which specifically binds to the lipid phosphatidylinositol (PI) 3-phosphate (PI 3-P). We show that this interaction is required both for correct localization of the protein to endosomes that only partially coincides with early endosomal autoantigen 1 and for efficient tyrosine phosphorylation of the protein in response to epidermal growth factor stimulation. Treatment with wortmannin reveals that Hrs phosphorylation also requires PI 3-kinase activity, which is necessary to generate the PI 3-P required for localization. We have used both hypertonic media and expression of a dominant-negative form of dynamin (K44A) to inhibit endocytosis; under which conditions, receptor stimulation fails to elicit phosphorylation of Hrs. Our results provide a clear example of the coupling of a signal transduction pathway to endocytosis, from which we propose that activated receptor (or associated factor) must be delivered to the appropriate endocytic compartment in order for Hrs phosphorylation to occur.  相似文献   

8.
Ligand-stimulated growth factor receptors are rapidly internalized and transported to early endosomes. Unstimulated receptors are also internalized constitutively, although at a slower rate, and delivered to the same organelle. At early endosomes, stimulated receptors are sorted for the lysosomal degradation pathway, whereas unstimulated receptors are mostly recycled back to the cell surface. To investigate the role of Hrs, an early endosomal protein, in this sorting process, we overexpressed Hrs in HeLa cells and examined the intracellular trafficking of epidermal growth factor receptor (EGFR) in EGF-stimulated and unstimulated cells. Overexpression of Hrs inhibited the trafficking of EGFR from early endosomes, resulting in an accumulation of EGFR on early endosomes in both ligand-stimulated and unstimulated cells. On the other hand, overexpression of Hrs mutants with a deletion or a point mutation within the FYVE domain did not inhibit the trafficking. These results suggest that Hrs regulates the sorting of ligand-stimulated and unstimulated growth factor receptors on early endosomes, and that the FYVE domain, which is required for Hrs to reside in a microdomain of early endosomes, plays an essential role in the function of Hrs.  相似文献   

9.
The FYVE domain associates with phosphatidylinositol 3‐phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P‐enriched membranes and membrane‐mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to POPC/POPE/PtdIns(3)P vesicles with a Kd of 49 nM at pH 6.0, however associates ~24 fold weaker at pH 8.0. The decrease in the affinity is primarily due to much faster dissociation of the protein from the bilayers in basic media. Lowering the pH enhances the interaction of the Hrs, RUFY1, Vps27p and WDFY1 FYVE domains with PtdIns(3)P‐containing membranes in vitro and in vivo, indicating that pH‐dependency is a general function of the FYVE finger family. The PtdIns(3)P binding and membrane insertion of the FYVE domain is modulated by the two adjacent His residues of the R(R/K)HHCRXCG signature motif. Mutation of either His residue abolishes the pH‐sensitivity. Both protonation of the His residues and nonspecific electrostatic contacts stabilize the FYVE domain in the lipid‐bound form, promoting its penetration and increasing the membrane residence time. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Role of Hrs in maturation of autophagosomes in mammalian cells   总被引:2,自引:0,他引:2  
Autophagy is an evolutionarily conserved system responsible for the degradation of cellular components and contributes to the increasing of amino acid pool, organelle turnover, and elimination of intracellular bacteria. The molecular process of autophagy is still unclear. Here we demonstrate that Hrs, a master regulator in endosomal protein sorting, plays critical roles for the autophagic degradation of non-specific proteins and Streptococcus pyogenes. We found that Hrs containing FYVE domain is localized to autophagosomes. Hrs depletion resulted in a significant decrease in the number of mature autophagosomes (autophagolysosomes) detected by the co-localization of autophagosome marker LC3 and lysosome marker LAMP-1. In contrast, formation of the primary autophagosome, detected by LC3 immunoblotting and lysosomal degradation of non-specific proteins, were not significantly altered by Hrs depletion. Based on these results, we propose a novel function of Hrs, as a crucial player in the maturation of autophagosomes.  相似文献   

11.
Mao Y  Nickitenko A  Duan X  Lloyd TE  Wu MN  Bellen H  Quiocho FA 《Cell》2000,100(4):447-456
We have determined the 2 A X-ray structure of the 219-residue N-terminal VHS and FYVE tandem domain unit of Drosophila Hrs. The unit assumes a pyramidal structure in which the much larger VHS domain (residues 1-153) forms a rectangular base and the FYVE domain occupies the apical end. The VHS domain is comprised of an unusual "superhelix" of eight alpha helices, and the FYVE domain is mainly built of loops, two double-stranded antiparallel sheets, and a helix stabilized by two tetrahedrally coordinated zinc atoms. The two-domain structure forms an exact 2-fold-related homodimer through antiparallel association of mainly FYVE domains. Dimerization creates two identical pockets designed for binding ligands with multiple negative charges such as citrate or phosphatidylinositol 3-phosphate.  相似文献   

12.
Hgs/Hrs is a tyrosine-phosphorylated FYVE finger protein that is induced by stimulation with various cytokines and growth factors. Here we show that Hgs plays critical roles in the signaling pathway for the interleukin-2-induced activation of the serum-response element and cyclic AMP-response element of the c-fos promoter. We found that Hgs associated physically with transforming growth factor-beta-activated kinase 1 (TAK1) and p21-activated kinase 1 (Pak1), which mediate the activation of c-Jun N-terminal kinase and serum response factor, respectively, leading to transactivation via the serum-response element and cyclic AMP-response element. These results suggest that Hgs is involved in the TAK1-JNK and Pak1-serum response factor pathways for the c-fos induction that is initiated by cytokines.  相似文献   

13.
Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010)  相似文献   

14.
Vps27 recruits ESCRT machinery to endosomes during MVB sorting   总被引:1,自引:0,他引:1  
Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.  相似文献   

15.
POSH (plenty of SH3s) acts as a scaffold that links activated Rac1 and downstream c-Jun N-terminal kinase (JNK) signaling modules. However, it is unknown whether it's functional domain-mediated roles including the interesting RING-finger domain or its cellular function. Here, we provide evidence that subcellular localization of POSH is regulated by a particular domain of the protein and POSH was colocalized with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) on early endosomes via interaction of Hrs with POSH's two rear SH3 domains. Moreover, the RING domain of POSH specifically regulates the stability of Hrs, but not of JNK1, via a ubiquitin-proteasomal degradation pathway. Finally, we demonstrate that JNK1 does not interact with Hrs under the conditions of POSH interacted with Hrs, but instead reduces the POSH-catalyzed ubiquitination of Hrs and their reciprocal interaction. Together, these data suggest that POSH has a distinct role as a specific E3 ubiquitin ligase for Hrs on early endosomes, and there exists a relationship between its separate activities as a scaffold and as an E3.  相似文献   

16.
Misra S  Beach BM  Hurley JH 《Biochemistry》2000,39(37):11282-11290
VHS domains are found at the N-termini of select proteins involved in intracellular membrane trafficking. We have determined the crystal structure of the VHS domain of the human Tom1 (target of myb 1) protein to 1.5 A resolution. The domain consists of eight helices arranged in a superhelix. The surface of the domain has two main features: (1) a basic patch on one side due to several conserved positively charged residues on helix 3 and (2) a negatively charged ridge on the opposite side, formed by residues on helix 2. We compare our structure to the recently obtained structure of tandem VHS-FYVE domains from Hrs [Mao, Y., Nickitenko, A., Duan, X., Lloyd, T. E., Wu, M. N., Bellen, H., and Quiocho, F. A. (2000) Cell 100, 447-456]. Key features of the interaction surface between the FYVE and VHS domains of Hrs, involving helices 2 and 4 of the VHS domain, are conserved in the VHS domain of Tom1, even though Tom1 does not have a FYVE domain. We also compare the structures of the VHS domains of Tom1 and Hrs to the recently obtained structure of the ENTH domain of epsin-1 [Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P., and Brünger, A. T. (2000) J. Cell Biol. 149, 537-546]. Comparison of the two VHS domains and the ENTH domain reveals a conserved surface, composed of helices 2 and 4, that is utilized for protein-protein interactions. In addition, VHS domain-containing proteins are often localized to membranes. We suggest that the conserved positively charged surface of helix 3 in VHS and ENTH domains plays a role in membrane binding.  相似文献   

17.
FYVE domains are small zinc-finger-like domains found in many proteins that are involved in regulating membrane traffic and have been shown to bind specifically to phosphatidylinositol 3-phosphate (PtdIns-3-P). FYVE domains are thought to recruit PtdIns-3-P effectors to endosomal locations in vivo, where these effectors participate in controlling endosomal maturation and vacuolar protein sorting. We have compared the characteristics of PtdIns-3-P binding by the FYVE domain from Hrs-1 (the hepatocyte growth factor-regulated tyrosine kinase substrate) with those of specific phosphoinositide binding by Pleckstrin homology (PH) domains. Like certain PH domains (such as that from phospholipase C-delta(1)), the Hrs-1 FYVE domain specifically recognizes a single phosphoinositide. However, while phosphoinositide binding by highly specific PH domains is driven almost exclusively by interactions with the lipid headgroup, this is not true for the Hrs-1 FYVE domain. The phospholipase C-delta(1) PH domain shows a 10-fold preference for binding isolated headgroup over its preferred lipid (phosphatidylinositol 4,5-bisphosphate) in a membrane, while the Hrs-1 FYVE domain greatly prefers (more than 50-fold) intact lipid in a bilayer over the isolated headgroup (inositol 1,3-bisphosphate). By contrast with reports for certain PH domains, we find that this preference for membrane binding over interaction with soluble lipid headgroups does not require FYVE domain oligomerization.  相似文献   

18.
Citron kinase is a Rho-effector protein kinase that is related to Rho-associated kinases of ROCK/ROK/Rho-kinase family. Both ROCK and citron kinase are suggested to play a role in cytokinesis. However, no substrates are known for citron kinase. We found that citron kinase phosphorylated regulatory light chain (MLC) of myosin II at both Ser-19 and Thr-18 in vitro. Unlike ROCK, however, citron kinase did not phosphorylate the myosin binding subunit of myosin phosphatase, indicating that it does not inhibit myosin phosphatase. We found that the expression of the kinase domain of citron kinase resulted in an increase in MLC di-phosphorylation. Furthermore, the kinase domain was able to increase di-phosphorylation and restore stress fiber assembly even when ROCK was inhibited with a specific inhibitor, Y-27632. The expression of full-length citron kinase also increased di-phosphorylation during cytokinesis. These observations suggest that citron kinase phosphorylates MLC to generate di-phosphorylated MLC in vivo. Although both mono- and di-phosphorylated MLC were found in cleavage furrows, di-phosphorylated MLC showed more constrained localization than did mono-phosphorylated MLC. Because citron kinase is localized in cleavage furrows, citron kinase may be involved in regulating di-phosphorylation of MLC during cytokinesis.  相似文献   

19.
Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.  相似文献   

20.
The structure of the endosomal-associated protein, Hrs, has been determined with cryo-electron microscopy. Hrs interacts with a number of proteins, including SNAP-25 and STAM1, forming a complex that binds ubiquitin moieties. Analytical ultracentrifugation studies revealed that Hrs exists as a hexamer. The symmetry and the structure of the hexameric form of Hrs were determined with the single-particle reconstruction method. Hrs comprises three antiparallel dimers with a central core and distinct caps on either end. Crystal structures of VHS and FYVE domains fit into the Hrs end caps in the EM density map. Thus, the location of domains that interact with the endosomal membrane, the VHS, FYVE, and C-terminal domains, facilitates the anchorage of Hrs to the membrane, initiating the functional processes of Hrs on the endosome. Based on our model, the Hrs hexamer interacts with the membrane and acts as a "master molecule" that presents multiple sites for protein binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号