首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The productions of β-fructofuranosidase from Bifidohacterium longum A1, B. adolescentis G1, and four other strains of Bifidobacteria were investigated. All strains used in this study were grown in modified BL broth containing a mixture of fructooligosaccharides [1F (1-β-D-fructofuranosyl)n-1sucrose, GFn (n = 2 – 5)] as the only carbon source. Hydrolyses of 1-kestose, sucrose, and inulin were detected in the extract of the cell. The highest activity on 1-kestose was detected in the extract of B. longum A1 followed by B. adolescentis G1. The other extracts weakly attacked 1-kestose. The relative activities of the extract of B. adolescentis G1 for 1-kestose, nystose, 1F-fructosylnystose, sucrose, and inulin were 100, 82.5, 50.8, 28.3, and 15.0, respectively. The relative activities for various substrates differed from invertases (yeast β-fructofuranosidases) and exo-inulinase from Penicillium trzehinskii.  相似文献   

2.
Summary Cellulomonas and Micrococcus spp. grew well at 30°C, pH 7.0, and produced carboxymethylcellulase (CMCase) and xylanase enzymes. Only one species of Micrococcus was able to produce an appreciable amount of -glucosidase. This is the first report where Micrococcus sp., isolated from termite gut, was able to produce all three enzymes (i.e. CMCase, xylanase and -glucosidase) required for degradation of cellulosic and hemicellulosic substrates. Offprint requests to: A. Varma  相似文献   

3.
Fifty-eight strains, representing 31 species of Penicillium, were screened for extracellular -glycosidase (amygdalase/linamarase) and pectolytic (polygalacturonase, pectin lyase) enzymes. One strain each of P. turbatum, P. piceum and P. paxilli showed very high -glycosidase activity and slightly lower activities were found in P. crustosum, P. expansum, P. oxalicum and P. aurantiogriseum. Generally, maximum -glycosidase activity showed reached during the stationary phase of growth. The seven species with highest -glycosidase activity showed different patterns of pectolytic activities, indicating that different species or combinations of species could be selected for different potential applications.L. Brimer is with the Department of Pharmacology and Pathobiology, Royal Veterinary & Agricultural University, 13 Bulowsvej, DK 1870 Frederiksberg C, Denmark; A.R. Cicalini and F. Federici are with the Dipartimento Agrobiologia e Agrochimica, University of Tuscia, Via S.C. de Lellis, I-01100 Viterbo, Italy. M. Petruccioli is with the Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, University of Basilicata, Via N. Sauro, 85, I-85100 Potenza, Italy.  相似文献   

4.
Summary An alkalophilic bacterium producing high amounts of the cell-associated -mannosidase and extracellular -mannanase was isolated from soil. The isolate (AM-001) that grew well in alkaline pH media was identified as a strain of Bacillus sp. The optimal cultivation temperature for enzyme production was 31° C for -mannosidase and 37° C for -mannanase with the optimum production medium composed of 1% konjac powder, 0.2% yeast extract, 2% Polypepton, 0.1% K2HPO4, 0.02% MgSO4 · 7H2O and 0.5% Na2CO3. Optimum pH and temperature for -mannosidase were 7.0 and 55° C, and for -mannanase were 9.0 and 65° C.  相似文献   

5.
Mannose is an important sugar in the biology of the Gram-negative bacterium Porphyromonas gingivalis. It is a major component of the oligosaccharides attached to the Arg-gingipain cysteine proteases, the repeating units of an acidic lipopolysaccharide (A-LPS), and the core regions of both types of LPS produced by the organism (O-LPS and A-LPS) and a reported extracellular polysaccharide (EPS) isolated from spent culture medium. The organism occurs at inflamed sites in periodontal tissues, where it is exposed to host glycoproteins rich in mannose, which may be substrates for the acquisition of mannose by P. gingivalis. Five potential mannosidases were identified in the P. gingivalis W83 genome that may play a role in mannose acquisition. Four mannosidases were characterized in this study: PG0032 was a β-mannosidase, whereas PG0902 and PG1712 were capable of hydrolyzing p-nitrophenyl α-d-mannopyranoside. PG1711 and PG1712 were α-1→3 and α-1→2 mannosidases, respectively. No enzyme function could be assigned to PG0973. α-1→6 mannobiose was not hydrolyzed by P. gingivalis W50. EPS present in the culture supernatant was shown to be identical to yeast mannan and a component of the medium used for culturing P. gingivalis and was resistant to hydrolysis by mannosidases. Synthesis of O-LPS and A-LPS and glycosylation of the gingipains appeared to be unaffected in all mutants. Thus, α- and β-mannosidases of P. gingivalis are not involved in the harnessing of mannan/mannose from the growth medium for these biosynthetic processes. P. gingivalis grown in chemically defined medium devoid of carbohydrate showed reduced α-mannosidase activity (25%), suggesting these enzymes are environmentally regulated.  相似文献   

6.
1. Crystalline beta-lactamase I from Bacillus cereus 569/H yielded only amino acids on acid hydrolysis, but crystalline beta-lactamase II from the same organism yielded also substantial quantities of neutral sugars and amino sugars. 2. Analysis with an amino acid analyser indicated that the two enzymes were similar though not identical in overall amino acid composition. Analysis of neutral and amino sugars as their silyl derivatives by gas-liquid chromatography showed that the carbohydrate moiety of beta-lactamase II contained residues of glucose, galactose, mannose, fucose, glucosamine and galactosamine. 3. After oxidation and hydrolysis both beta-lactamases gave small amounts of cysteic acid. After treatment of inactive Zn(2+)-free beta-lactamase II with N-ethylmaleimide or iodoacetate enzymic activity was not restored by the addition of Zn(2+).  相似文献   

7.
-Glucosidase and -xylosidase production by a yeastlike Aureobasidium sp. was carried out during solid-state and submerged fermentation using different carbon sources and crude enzymes were characterized. -Glucosidase and -xylosidase exhibited optimum activities at pH 2.0–2.5 and 3.0, respectively. These enzymes had the maximum activities at 65°C and were stable in a wide pH range and at high temperatures.  相似文献   

8.
1. A crystalline preparation of beta-lactamase II has been separated into two moieties by gel filtration on a column of Sephadex G-100. 2. The first moiety consisted mainly of carbohydrate and showed virtually no beta-lactamase activity. 3. The second moiety was a protein of molecular weight 22500, which was enzymically active. 4. The protein moiety, like the original protein-carbohydrate complex, required Zn(2+) for beta-lactamase activity. It did not differ significantly from the complex in its behaviour to a number of cephalosporin substrates, but was less stable to heat than the complex. 5. About 30% of the total beta-lactamase activity was lost when the protein-carbohydrate complex was separated into the two moieties. This activity was regained when the protein and carbohydrate moieties were mixed, but the mixture did not show the heat stability of the original complex.  相似文献   

9.
Summary Cell-free extracts of Leuconostoc and Lactococcus species were tested for their -acetolactate synthase and -acetolactate decarboxylase activities. In Leuconostoc mesenteroides subsp. cremoris, Leuconostoc mesenteroides subsp. mesenteroides and Leuconostoc lactis, the Km of -acetolactate synthase for pyruvate was close to 10 mM whereas it was 30 mM in Lactococcus lactis subsp. lactis biovar. diacetylactis. The Km of -acetolactate decarboxylase for -acetolactic acid was very low (0.3 mM) in Leuconostoc species in comparison to Lactococcus lactis subsp. lactis biovar. diacetylactis (60 mM). In the latter bacterium, -acetolactate decarboxylase showed a sigmoidal dependance upon -acetolactic acid and was activated by the three branchedchain amino acids: leucine, isoleucine and valine.  相似文献   

10.
1. A procedure was devised which is suitable for the isolation of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9 on a large scale. After adsorption on to Celite both enzymes were eluted in good yield and separated by chromatography on Sephadex CM-50. 2. beta-Lactamase I was separated into three main components by isoelectric focusing and into two components by chromatography. 3. The Zn(2+)-requiring beta-lactamase II obtained by this procedure had a lower molecular weight (22000) than beta-lactamase I (28000) and also differed from the latter in containing one cysteine residue. 4. The beta-lactamase II contained no carbohydrate, but showed the thermostability of the enzyme isolated earlier as a protein-carbohydrate complex. 5. Amino acid analyses and tryptic-digest ;maps' indicate that some degree of homology between beta-lactamase I and beta-lactamase II is possible, but that beta-lactamase I is not composed of the entire sequence of beta-lactamase II together with an additional peptide fragment. 6. A 6-methylpenicillin and a 7-methylcephalosporin showed much lower affinities for both enzymes than did penicillins and cephalosporins themselves.  相似文献   

11.
An efficient synthesis of a 5-fluorouracil-cephalosporin prodrug is described for use against colorectal and other cancers in antibody and gene-directed therapies. The compound shows stability in aqueous media until specifically activated by β-lactamase (βL). The kinetic parameters of the 5-fluorouracil-cephalosporin conjugate were determined in the presence of Enterobacter cloacae P99 βL (ECl βL) revealing a Km = 95.4 μM and Vmax = 3.21 μMol min?1 mg?1. The data compare favorably to related systems that have been reported and enable testing of this prodrug against cancer cell lines in vitro and in vivo.  相似文献   

12.
This study aimed to examine incidence, virulence and antimicrobial properties in Aeromonas spp. isolated from cockles (Tegillarca granosa) in Korea. Firstly, genomic DNA was extracted from 32 Aeromonas spp. isolates, and PCR screening for virulence, antimicrobial resistance genes was carried out. The disk diffusion assay was used to examine antimicrobial susceptibility. Aeromonas spp. isolates comprised, A. hydrophila (n = 8), A. veronii (n = 15), A. media (n = 2), A. salmonicida (n = 2), A. allosaccharophila (n = 1), A. bestiarum (n = 1), A. culicicola (n = 1), A. enteropelogenes (n = 1) and A. rivipollensis (n = 1). High prevalence of virulence-related genes reported as; act (69%), alt (47%), ast (41%), aerA (56%), lip (50%), ahyB (47%), ser (28%), fla (66%), gcat (44%), ascV (50%) and hlyA (72%). All isolates were multidrug resistant, while highest resistance level observed for ampicillin (100%), followed by imipenem (81%), rifampicin (78%), cephalothin (72%), piperacillin (47%) and Colistin sulfate (31%). The presence of blaSHV, blaCTX, tetE, aac(6’)-Ib, strA-strB, qnrS, qnrB and IntI1 genes were reported in varying combinations. Nevertheless, blaTEM, blaIMP, tetA, tetB, qnrA, qnrB and aphAI-IAB genes and the class1 integron were not detected. The high occurrence of virulence and antimicrobial resistance genes in cockles reveals that it can be a potential health risk source for consumers.  相似文献   

13.
The conversion of soluble starch to cyclomaltohexaose (α-CD), cyclomaltoheptaose (β-CD), cyclomaltooctaose (γ-CD) and cyclomaltononaose (δ-CD) by cyclodextrin glycosyltransferases (E.C. 2.4.1.19) from Bacillus spp. and bacterial isolates was studied. The results show that δ-CD was formed by all the enzymes investigated in the range of 5%–11.5% of the total amount of α-, β-, γ-, and δ-CD produced. Received: 17 February 1998 / Received revision: 18 May 1998 / Accepted: 21 May 1998  相似文献   

14.
1. Pseudomonas pyocyanea N.C.T.C. 8203 produces a beta-lactamase that is inducible by high concentrations of benzylpenicillin or cephalosporin C. Methicillin appeared to be a relatively poor inducer, but this could be attributed in part to its ability to mask the enzyme produced. Much of the enzyme is normally cell-bound. 2. No evidence was obtained that the crude enzyme preparation consisted of more than one beta-lactamase and the preparation appeared to contain no significant amount of benzylpenicillin amidase or of an acetyl esterase. 3. The maximum rate of hydrolysis of cephalosporin C and several other derivatives of 7-aminocephalosporanic acid by the crude enzyme was more than five times that of benzylpenicillin. Methicillin, cloxacillin, 6-aminopenicillanic acid and 7-aminocephalosporanic acid were resistant to hydrolysis, and methicillin and cloxacillin were powerful competitive inhibitors of the action of the enzyme on easily hydrolysable substrates. 4. Cephalosporin C, cephalothin and cephaloridine yielded 2 equiv. of acid/mole on enzymic hydrolysis, and deacetylcephalorsporin C yielded 1 equiv./mole. Evidence was obtained that the opening of the beta-lactam ring of cephalosporin C and cephalothin is accompanied by the spontaneous expulsion of an acetoxy group and that of cephaloridine by the expulsion of pyridine. 5. A marked decrease in the minimum inhibitory concentration of benzylpenicillin and several hydrolysable derivatives of 7-aminocephalosporanic acid was observed when the size of the inoculum was decreased. This suggested that the production of a beta-lactamase contributed to the factors responsible for the very high resistance of Ps. pyocyanea to these substances. It was therefore concluded that the latter might show synergism with the enzyme inhibitors, methicillin and cloxacillin, against this organism.  相似文献   

15.
Metal cofactor requirement of β-lactamase II   总被引:2,自引:1,他引:2       下载免费PDF全文
1. The apoenzyme obtained on removal of Zn(2+) from beta-lactamase II from Bacillus cereus 569/H/9 showed less than 0.001% of the activity of the Zn(2+)-containing enzyme. 2. Removal of Zn(2+) led to a conformational change in the enzyme and partial unmasking of a thiol group. 3. Replacement of Zn(2+) by Co(2+), Cd(2+), Mn(2+) or Hg(2+) gave enzymes with significant, but lower, beta-lactamase activity. No activity was detected in the presence of Cu(2+), Ni(2+), Mg(2+) or Ca(2+). 4. Equilibrium dialysis indicated that the enzyme had at least two Zn(2+) binding sites. With benzylpenicillin as substrate the variation in activity with concentration of Zn(2+) indicated that activity paralleled binding of Zn(2+) to the site of highest affinity. 5. Replacement of Zn(2+) by Co(2+) and Cd(2+) gave enzymes with absorption bands at 340 and 245nm respectively, and raised the question of whether the thiol group in the enzyme is a metal-ion ligand. 6. Reduction of the product obtained by reaction of denatured beta-lactamase II with Ellman's reagent [5,5'-dithiobis-(2-nitrobenzoic acid)] gave a protein which could refold to produce beta-lactamase II activity in high yield.  相似文献   

16.
17.
β-lactamases (penicillinases) are important complicating factors in bacterial infections and excellent theoretical and experimental models in protein structure, dynamics and evolution. Bacillus licheniformis exo-small penicillinase (ESP) is a Class A β-lactamase with three tryptophan residues, one located in each of the two protein domains and one located in the interface between domains. To determine the tryptophan contribution to the ESP UV-absorption, circular dichroism, and steady-state and time-resolved fluorescence, four Trp → Phe mutants were prepared and characterized. The residue substitutions had little impact on the native conformation. UV-absorption and CD features were identified and ascribed to specific aromatic residues. Time-resolved fluorescence showed that most of the fluorescence decay of ESP tryptophans is due to a discrete exponential component with a lifetime of 5-6 ns. Fluorescence polarization measurements indicated that fluorescence of Trp 210 is nearly independent of the fluorescence of Trp 229 and Trp 251, whereas a substantial energy homotransfer between the latter pair takes place. The spectroscopic information was rationalized on the basis of structural considerations and should help in the interpretation and monitoring of the changes at the sub domain level during the conformational transitions and fluctuations of ESP and other Class A β-lactamases.  相似文献   

18.
β-Poly-L-malate (PMA) is synthesized by plasmodia of Physarum polycephalum during growth and secreted into the culture medium. There it is degraded to L-malate after growth has ceased. Its concentration is highest in cell nuclei, where it probably performs a plasmodium-specific function.  相似文献   

19.
20.
β-Mannanase and β-mannosidase from Aspergillus awamori K4 was produced by solid culture with coffee waste and wheat bran. The optimum composition for enzyme production was 40% coffee waste–60% wheat bran. Two enzymes were partially purified. Optimum pH was about 5 for both enzymes, and optimum temperature was around 80°C for β-mannanase and 60–70°C for β-mannosidase. These enzymes produced some oligosaccharides from glucomannan and galactomannan by their hydrolyzing and transferring activities. β-Mannanase hydrolyzed konjak and locust bean gum 39.1% and 15.8%, respectively. Oligosaccharides of various molecular size were released from glucomannan of konjak, but on the addition of cellulase, mannobiose was released selectively. In locust bean gum, tetra-, tri-, and disaccharides (mannobiose) were mainly released by K4 β-mannanase. Tetra- and trisaccharides were heterooligosaccharides consisting of galactose and mannose residues. K4 β-mannosidase had a transglycosylation action, transferring mannose residue to alcohols and sugars like fructose. Received: 24 April 2000/Accepted: 20 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号