共查询到20条相似文献,搜索用时 14 毫秒
1.
植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能 总被引:7,自引:0,他引:7
介绍了植物富含亮氨酸重复序列(leucine-rich repeat,LRR)型类受体蛋白激酶概念、最近发现的这类蛋白激酶的亚结构域特征;总结了目前已确定其功能的LRR型类受体蛋白激酶,并分别阐述了它们在参与植物抗逆性反应、发育调控及激素的信号转导等过程中的生物学功能;着重介绍和讨论了LRR型类受体蛋白激酶复合物之间及其与下游成分KAPP之间互作而产生信号传递的分子机理.最后展望了LRR型类受体蛋白激酶生物学功能、信号转导机制、以及应用于生产实践的研究前景. 相似文献
2.
The Diverse Roles of Extracellular Leucine-rich Repeat-containing Receptor-like Proteins in Plants 总被引:1,自引:0,他引:1
Guodong Wang Martijn Fiers Ursula Ellendorff Zhezhi Wang Pierre J. G. M. de Wit Gerco C. Angenent 《植物科学评论》2010,29(5):285-299
Plant cells use various types of cell surface receptor molecules to sense extracellular signals and modulate cell-to-cell communication in many biological processes. Extracellular leucine-rich repeat (eLRR) receptor-like proteins (RLPs) represent an important class of such cell surface receptors. RLPs differ from receptor-like kinases (RLKs), which compose the largest class of cell surface receptors in many plant species, because they lack a cytoplasmic kinase domain. RLPs play roles in both developmental processes and disease resistance. A total of 57 RLP encoding genes has been identified in Arabidopsis. Two of them, CLAVATA2 (CLV2) and Too Many Mouths (TMM) have a function in meristem maintenance and stomatal distribution, respectively, whereas few others act in basal defense against pathogens. Although the function of most RLPs in Arabidopsis remains unclear, considerable progress has been made in understanding RLP functioning and signaling over the years. This review focuses on the function of RLPs in plants. Furthermore, the function of distinct RLP domains and the role of conserved residues important for perception and ligand specificity are discussed. The role of RLP proteins in multimeric complexes to sense biotic and abiotic extracellular signals is also addressed. 相似文献
3.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone. 相似文献
4.
Van Der Hoorn RA Rivas S Wulff BB Jones JD Joosten MH 《The Plant journal : for cell and molecular biology》2003,35(3):305-315
Gel filtration is frequently used to study the behaviour and composition of protein complexes. In previous studies, gel filtration analysis of solubilised membranes containing the tomato Cf-4 and Cf-9 resistance proteins indicated that these Cf proteins are present in an approximately 400- and 420-kDa protein complex, respectively, which contains only one Cf molecule per complex, does not contain Rho-related proteins, and does not alter in size upon elicitation. Here, we show that inactive Cf-4 and Cf-9 mutant proteins have a similar large apparent size upon gel filtration analysis. The size remains unaltered after pre-treating the samples under harsh conditions, such as boiling with SDS and incubation in 6 m urea. A similar large apparent size was found for Cf-4 and Cf-9 isolated from SDS gel and for Cf-9 expressed by insect cells. Therefore, the large apparent size observed in our studies appears to be an intrinsic property of the Cf proteins, rather than being caused by association with high-molecular-weight protein(s). Taken together, these results suggest that caution should be taken when interpreting data obtained from gel filtration of LRR-containing proteins. 相似文献
5.
6.
Postembryonic growth and development in higher plants are ultimately reliant on the activity of meristems, where the cells divide frequently to provide source cells for new organs and tissues while in part maintain their pluripotent nature as stem cells. The shoot apical meristem (SAM) is maintained throughout the life of plants and responsible for the development of all areal tissues. In Arabidopsis thaliana, the size of SAM is controlled by a peptide ligand, CLAVATA3 (CLV3). Previously, genetic studies have identified several genes that function downstream of CLV3, many of which, intriguingly, encode receptors. Recently we identified an E3 ubiquitin ligase, PLANT U-BOX 4 (PUB4), as a key regulatory component of root meristem maintenance that functions downstream of an exogenous synthetic CLV3 peptide. Here, we report an additional function of PUB4 in the SAM. 相似文献
7.
植物CrRLK1-L亚家族类受体激酶的胞外域具有新颖结构基序,但功能大都未知.该家族成员广泛存在于被子植物中,但在动物和微生物中不存在其同源物.CrRLK1-L家族成员相对较少,但组织表达非常广泛.它们定位于细胞质膜上,并且部分成员的定位还具有极性,这与其参与雌雄配子体的识别和受精作用密切相关.该家族成员普遍具有激酶活性,该活性对其功能的发挥至关重要.目前仅报道在拟南芥中参与助细胞与花粉的识别和调控营养组织的细胞伸长,但参与这些生物学过程的作用机制似乎独立于已知的信号通路之外,可能有自身独特的信号传导机制.所以对这一类具特有结构基序的类受体激酶基因的功能研究,将有助于解析植物特有生物学过程的分子作用机制,特别是在植物有性生殖过程中,合理利用这些分子开展育种实践对未来农业生产具有潜在的应用价值. 相似文献
8.
干细胞巢的维持与后代细胞的分化是多细胞高等生物个体发育的基础。生长素对植物茎尖和根尖分生组织的形态建成, 尤其是对位于植物这2个末端的分生组织中心的干细胞巢的活性维持起着至关重要的作用。该文综述了近几年在植物根尖干细胞发育领域的研究进展, 主要阐释了PLT蛋白途径、SCR-SHR蛋白途径以及环境因子多信号调控模块维持植物根尖分生组织中干细胞巢稳定的机制, 揭示了生长素可以通过就近合成、极性运输以及信号转导3种方式参与这些信号模块的调控, 从而维持生长素在根尖静止中心细胞附近干细胞巢的浓度梯度, 精确地平衡植物干细胞巢中细胞的增殖与分化。 相似文献
9.
10.
通过cDNA-AFLP技术,从芜菁花叶病毒(TuMV)侵染的不结球白菜幼叶中分离到一条差异表达的基因片段,克隆获得其cDNA全长为2 124bp,编码707个氨基酸的富亮氨酸重复类受体激酶,命名为BcLRK01。利用实时定量PCR研究了该基因在TuMV侵染及高盐、冷胁迫、水杨酸(SA)、茉莉酸(JA)、乙烯(ET)等处理下的表达情况,结果显示,TuMV侵染、高盐、冷胁迫、SA、JA和ET等均能诱导BcLRK01不同程度的表达,说明该基因可能是不结球白菜病毒病的病程相关基因,同时也参与高盐和冷胁迫以及SA、JA、ET等的信号途径。 相似文献
11.
Young A. Yoo Myoung Hee Kang Byung Soo Kim Jun Suk Kim Jae Hong Seo 《Differentiation; research in biological diversity》2009
The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system. We show that after co-culture with hPMSCs, human mammary epithelial cell lines (MCF-10F and HEMC) underwent significant morphologic alterations and a dramatic increase in ductal–alveolar branching, which was accompanied by a decrease or loss of the epithelial marker E-cadherin and a gain of the mesenchymal markers, α-SMA and vimentin. MCF-10F and HEMC proliferation was also inhibited in the presence of hPMSCs, and this retardation in growth was due to cell cycle arrest. Furthermore, in MCF-10F and HMEC cells, hPMSCs induced the production of lipid droplets, milk fat globule protein, and milk protein lactoferrin, which are markers of functional mammary differentiation. We also noticed an elevation in ALK5 and phosphorylated Smad3 protein levels upon hPMSC co-culture. Strikingly, the changes in morphology, proliferation, and differentiation were reversed by treatment with ALK5 or Smad3 knockdown in MCF-10F/hPMSC co-cultures. Collectively, our findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT) and differentiation of human breast epithelial cells through the ALK5/Smad3 signaling pathway. 相似文献
12.
Haibin Luo Liu Tie Mingyan Cao Alan K. Hunter Timothy M. Pabst Jiali Du Raymond Field Yuling Li William K. Wang 《Biotechnology progress》2019,35(1):e2732
A stochastic approach of copurification of the protease Cathepsin L that results in product fragmentation during purification processing and storage is presented. Cathepsin L was identified using mass spectroscopy, characterization of proteolytic activity, and comparison with fragmentation patterns observed using recombinant Cathepsin L. Cathepsin L existed in Chinese hamster ovary cell culture fluids obtained from cell lines expressing different products and cleaved a variety of recombinant proteins including monoclonal antibodies, antibody fragments, bispecific antibodies, and fusion proteins. Therefore, characterization its chromatographic behavior is essential to ensure robust manufacturing and sufficient shelf life. The chromatographic behaviors of Cathepsin L using a variety of techniques including affinity, cation exchange, anion exchange, and mixed mode chromatography were systematically evaluated. Our data demonstrates that copurification of Cathepsin L on nonaffinity modalities is principally because of similar retention on the stationary phase and not through interactions with product. Lastly, Cathespin L exhibits a broad elution profile in cation exchange chromatography (CEX) likely because of its different forms. Affinity purification is free of fragmentation issue, making affinity capture the best mitigation of Cathepsin L. When affinity purification is not feasible, a high pH wash on CEX can effectively remove Cathepsin L but resulted in significant product loss, while anion exchange chromatography operated in flow-through mode does not efficiently remove Cathepsin L. Mixed mode chromatography, using Capto™ adhere in this example, provides robust clearance over wide process parameter range (pH 7.7 ± 0.3 and 100 ± 50 mM NaCl), making it an ideal technique to clear Cathepsin L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2732, 2019 相似文献
13.
Ghanshyam Teli Rohit Pal Lalmohan Maji Sindhuja Sengupta Nulgumnalli Manjunathaiah Raghavendra Gurubasavaraja Swamy Purawarga Matada 《化学与生物多样性》2023,20(9):e202300515
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors. 相似文献
14.
Hiroki Miwa Atsuko Kinoshita Hiroo Fukuda Shinichiro Sawa 《Journal of plant research》2009,122(1):31-39
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing
population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the
RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components
required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain
proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory
mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the
organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has
been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here,
we overview the WUS–CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation
of the regulatory system for stem cells in various plant species.
S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007. 相似文献
15.
16.
Kim HU Cotter R Johnson S Senda M Dodds P Kulikauska R Tang W Ezcura I Herzmark P McCormick S 《Plant molecular biology》2002,50(1):1-16
We previously characterized LePRK1 and LePRK2, pollen-specific receptor kinases from tomato (Muschietti et al., 1998). Here we identify a similar receptor kinase from maize, ZmPRK1, that is also specifically expressed late in pollen development, and a third pollen receptor kinase from tomato, LePRK3. LePRK3 is less similar to LePRK1 and LePRK2 than either is to each other. We used immunolocalization to show that all three LePRKs localize to the pollen tube wall, in partially overlapping but distinct patterns. We used RT-PCR and degenerate primers to clone homologues of the tomato kinases from other Solanaceae. We deduced features diagnostic of pollen receptor kinases and used these criteria to identify family members in the Arabidopsis database. RT-PCR confirmed pollen expression for five of these Arabidopsis candidates; two of these are clearly homologues of LePRK3. Our results reveal the existence of a distinct pollen-specific receptor kinase gene family whose members are likely to be involved in perceiving extracellular cues during pollen tube growth. 相似文献
17.
18.
Yuancheng Peng Liangliang Chen Yaru Lu Wenying Ma Yiping Tong Yunhai Li 《Plant signaling & behavior》2013,8(6)
Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells. However, the factors connecting cytokinin, auxin, SHY2 and PLT1/2 are largely unknown. In a recent study, we have shown that the DA1-related protein 2 (DAR2) acts downstream of cytokinin and SHY2 but upstream of PLT1/2 to affect root meristem size. Here, we discuss the possible molecular mechanisms by which Arabidopsis DAR2 controls root meristem size. 相似文献
19.
Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy 总被引:36,自引:0,他引:36
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy. 相似文献
20.
A rice gene, OsBISERK1, encoding a protein belonging to SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) type of leucine-rich repeat receptor-like kinases (LRR-RLKs) was identified. The OsBISERK1 encodes a 624 aa protein with high level of identity to known plant SERKs. OsBISERK1 contains a hydrophobic signal peptide, a leucine zipper, and five leucine-rich repeat motifs in the extracellular domain; the cytoplasmic region carries a proline-rich region and a single transmembrane domain, as well as a conserved intracellular serine/threonine protein kinase domain. OsBISERK1 has a low level of basal expression in leaf tissue. However, expression of OsBISERK1 was induced by treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance in rice, and also up-regulated after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during incompatible interaction between a blast-resistant rice genotype and M. grisea. The results suggest that OsBISERK1 may be involved in disease resistance responses in rice. 相似文献