首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.  相似文献   

2.
The adipose-specific protein adiponectin binds to a number of target molecules, including damaged endothelium and the surface of apoptotic cells. However, the significance of this binding remains unclear. This study demonstrates the binding of purified C1q to recombinant adiponectin under physiological conditions, and the dependence of this upon Ca++ and Mg++. Binding was enhanced by metaperiodate-mediated destruction of glucosylgalactosyl sugars on adiponectin. Adiponectin was bound by the globular domain of the A chain of collagenase-digested C1q, and C1q binding induced deposition of C4 and C3 through activation of the classical complement pathway. After Western blotting, affinity-purified adiponectin from human serum bound C1q, whereas adiponectin in whole serum did not, unless pre-treated with metaperiodate. These results suggest adiponectin is member of the pattern-recognition family of defence collagens, able to bind target molecules and activate complement. It may therefore play an important role in innate immunity and autoimmune phenomena.  相似文献   

3.
Binding of C1q, the first component of the complement system, to some human pathogens has been earlier reported. In the present study, direct binding of C1q to group A streptococci (GAS) of various serotypes as well as some other Gram-positive and Gram-negative species was demonstrated. The interaction between C1q and GAS was investigated more in detail. In hot neutral extracts of a number of GAS strains two components of 64 and 52 kDa, respectively, bound C1q; alkaline and SDS extracts yielded the 52 kDa component as the main C1q-binding substance. Trypsin treatment of the SDS extracts of two GAS strains suggested the C1q-binding component(s) to be of protein nature. C1q-binding material purified from the SDS extract of an avirulent strain, type T27, was separated in 12% SDS-PAGE and probed in Western blot with human C1q and fibrinogen, conjugated to horse radish peroxidase (HRP) as well as rabbit IgG antibodies complexed to HRP (PAP system). The 52 kDa component was non-reactive with fibrinogen or rabbit IgG. However, C1q-binding components purified from the alkaline extracts of two M-positive strains revealed strong binding of either fibrinogen (type M5) or both fibrinogen and rabbit IgG (type M76); the molecular mass of these components, 55 kDa and 43–40 kDa, respectively, was in agreement with the reported molecular mass of the M5 and FcRA76 proteins. Our findings suggest that C1q may interact with GAS through certain M-family proteins as well as by a so far unidentified surface factor of protein nature occurring in most GAS strains. The involvement of M-family proteins, regarded as virulence factors of these organisms, may suggest the interaction of GAS with C1q as biologically important.  相似文献   

4.
Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.  相似文献   

5.
C1q is the recognition subunit of the first component of the classical complement pathway. It participates in clearance of immune complexes and apoptotic cells as well as in defense against pathogens. Inappropriate activation of the complement contributes to cellular and tissue damage in different pathologies, urging the need for the development of therapeutic agents that are able to inhibit the complement system. In this study, we report heme as an inhibitor of C1q. Exposure of C1q to heme significantly reduced the activation of the classical complement pathway, mediated by C-reactive protein (CRP) and IgG. Interaction analyses revealed that heme reduces the binding of C1q to CRP and IgG. Furthermore, we demonstrated that the inhibition of C1q interactions results from a direct binding of heme to C1q. Formation of complex of heme with C1q caused changes in the mechanism of recognition of IgG and CRP. Taken together, our data suggest that heme is a natural negative regulator of the classical complement pathway at the level of C1q. Heme may play a role at sites of excessive tissue damage and hemolysis where large amounts of free heme are released.  相似文献   

6.
C1q/TNF family comprises over thirty secreted multimeric proteins that play diverse and important roles in immune, endocrine, skeletal, neuronal, reproductive, sensory, and vascular systems. Here we describe two novel human C1q/TNF family members, designated as CTRP8 and CTRP9B. Both genes are absent in the mouse genome. CTRP8 is expressed predominantly in lung and testis. In addition to forming homotrimers, CTRP8 also forms heteromeric complexes with C1q-related factor (CRF). CRF is a secreted multimeric protein that forms heteromeric complexes with CTRP1, CTRP9, and CTRP10. Although human CTRRP9A and CTRP9B share 98% amino acid identity, they are encoded by distinct genes and are biochemically distinct. While CTRP9A is robustly secreted as a multimeric protein, CTRP9B requires physical association with CTRP9A or adiponectin for its secretion. We propose here that combinatorial association between C1q/TNF family members is a possible mechanism to generate an expanded repertoire of functionally distinct ligands with altered function and/or receptor specificity.  相似文献   

7.
The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30 degrees C-90 degrees C. We found that predominantly beta-sheet structure of both proteins was stable up to 70 degrees C, and that a reversible conformational change toward alpha-helix was apparent at temperatures ranging from 70 degrees C to 90 degrees C. The ability of both proteins to inhibit complement was not impaired after incubation at 95 degrees C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in beta-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases.  相似文献   

8.
9.
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.  相似文献   

10.
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH.  相似文献   

11.
C1q is of interest in systemic lupus erythematosus (SLE) research due to deficiencies in its activity being associated with the disease. Current published protocols for measuring C1q vary greatly in their results and ease of reproducibility. Due to this, average C1q concentrations have been reported between 56 and 276 μg/mL in non-SLE serum. We present an improved method for quantifying C1q concentrations, which employs a sandwich ELISA. This method has improved precision, cost efficiency, up-scaling, reproducibility, and uses significantly lesser volumes of serum sample when compared to RID and other methods for quantifying C1q. We report an average concentration of 113 ± 40 μg/mL for C1q in non-SLE serum. The assay designed here will be useful in the high-throughput measurement of serum C1q in SLE cases.  相似文献   

12.
Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.  相似文献   

13.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

14.
Factor H, a control protein of the human complement system, is closely related in functional activity to two other complement control proteins, C4b-binding protein (C4bp) and complement receptor type 1 (CR1). C4bp is known to have an unusual primary structure consisting of eight homologous units each about 60 amino acids long. Such units also occur in the N-terminal regions of the complement proteins C2 and factor B, and in the non-complement serum glycoprotein 2I. Amino acid sequencing, and sequencing of a factor H cDNA clone, show that factor H also contains internal repeating units, and is homologous to the proteins listed above.  相似文献   

15.
The first complement component C1s formed large aggregates with bFGF when bFGF and C1s were incubated at 37°C overnight. Under non-reducing conditions, a part of the aggregates did not penetrate into 5% polyacrylamide gel in the presence of SDS, and the rest penetrated into 5% gel but not into 12% gel. The aggregates were dissociated into monomers by reducing with 2-mercaptoethanol. Both active and inactive C1s formed aggregates with bFGF. In addition, a portion of bFGF was degraded by active C1s but not by inactive C1s. Aggregates were not formed when 2-mercaptoethanol (2 mM &base;) was added to the incubation mixture. After the incubation with C1s the growth-stimulating activity of bFGF was measured by using human umbilical vein endothelial cells (HUVEC) as indicator cells. The aggregate formation between C1s and bFGF significantly reduced the activity of bFGF. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Uromodulin (UMOD) can bind complement factor H (cFH) and inhibit the activation of complement alternative pathway (AP) by enhancing the cofactor activity of cFH on degeneration of C3b. UMOD, an N-glycans-rich glycoprotein, is expressed in thick ascending limb of Henle's loop where the epithelia need to adapt to gradient change of pH and ion concentration. ELISA-based cofactor activity of cFH and erythrocytes haemolytic assay was used to measure the impact of native and de-glycosylated UMOD on the functions of cFH. The binding assay was performed under different pH and ion concentrations, using ELISA. The levels of sialic acid on UMOD, from healthy controls and patients with chronic kidney disease (CKD), were also detected by lectin-ELISA. It was shown that removal of glycans decreased the binding between UMOD and cFH and abolished the ability of enhancing C3b degradation. In acidic condition, the binding became stronger, but it reduced as sodium concentration increased. A significant decrease of α-2,3 sialic acids on UMOD was observed in CKD patients compared with that of healthy individuals. The sialic acids on UMOD, local pH and sodium concentration could impact the binding capacity between UMOD and cFH and thus regulate the activation of complement AP.  相似文献   

18.
Structural knowledge of interactions amongst the ~ 40 proteins of the human complement system, which is central to immune surveillance and homeostasis, is expanding due primarily to X‐ray diffraction of co‐crystallized proteins. Orthogonal evidence, in solution, for the physiological relevance of such co‐crystal structures is valuable since intermolecular affinities are generally weak‐to‐medium and inter‐domain mobility may be important. In this current work, Förster resonance energy transfer (FRET) was used to investigate the 10 μM KD (210 kD) complex between the N‐terminal region of the soluble complement regulator, factor H (FH1‐4), and the key activation‐specific complement fragment, C3b. Using site‐directed mutagenesis, seven cysteines were introduced individually at potentially informative positions within the four CCP modules comprising FH1‐4, then used for fluorophore attachment. C3b possesses a thioester domain featuring an internal cycloglutamyl cysteine thioester; upon hydrolysis this yields a free thiol (Cys988) that was also fluorescently tagged. Labeled proteins were functionally active as cofactors for cleavage of C3b to iC3b except for FH1‐4(Q40C) where conjugation with the fluorophore likely abrogated interaction with the protease, factor I. Time‐resolved FRET measurements were undertaken to explore interactions between FH1‐4 and C3b in fluid phase and under near‐physiological conditions. These experiments confirmed that, as in the cocrystal structure, FH1‐4 binds to C3b with CCP module 1 furthest from, and CCP module 4 closest to, the thioester domain, placing subsequent modules of FH near to any surface to which C3b is attached. The data do not rule out flexibility of the thioester domain relative to the remainder of the complex.  相似文献   

19.
Wang T  Secombes CJ 《Immunogenetics》2003,55(9):615-628
Three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway have been fully sequenced and their expression investigated in rainbow trout (Oncorhynchus mykiss). Trout C1r cDNA encodes a 707-amino-acid (aa) protein with a theoretical M r of 77,200. The trout translation shows highest homology with carp C1r/s, and lower, equal homologies to mammalian C1r and C1s, and MASPs from other vertebrate species. However, phylogenetic analysis and structural features suggest that the trout sequence, together with the two carp sequences, are the orthologues of mammalian C1r. The trout C4 cDNA encodes a 1,724-aa protein with a theoretical M r of 192,600. The trout translation shows higher homologies to the carp C4B and medaka C4, but lower homologies to C4 from other species and the carp C4A. It has a predicted signal peptide of 22 aa, a -chain of 773 aa, a -chain of 635 aa and a -chain of 288 aa. Trout C1 inhibitor cDNA encodes a 611-aa protein with a theoretical M r of 68,700. The trout translation has a C-terminal serpin domain with high homologies with mammalian counterparts (~37% identities), and a longer N-terminus, with no significant homology to other serpins, which contains two Ig-like domains. A molecule containing two Ig-like domains followed by a serpin domain, has also been found in an EST clone from another bony fish, the Japanese flounder. This suggests a unique structural feature of C1 inhibitor in fish. The functional significance of the Ig domains is discussed. The liver is the major site of expression of the three trout complement components, C1r, C4 and C1 inhibitor, although their expression is also detectable in other tissues. The extra-hepatic expression of complement genes may be important for local protection and inflammatory responses. Low-level constitutive expression of the three components was also detectable in a trout monocyte/macrophage cell line RTS-11, but only the expression of C4 could be upregulated by LPS.The nucleotide sequence data will appear in the EMBL/DDBJ/GenBank nucleotide sequence database under the following accession numbers: AJ519929 (trout C1r), AJ519930 (trout C1 inhibitor), AJ544262 (trout C4) and BN000290 (flounder C1 inhibitor)  相似文献   

20.
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2 μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500–600 ms (-0.163 vs. −0.279), 500–700 ms (-0.159 vs. −0.248), and 500–800 ms (-0.148 vs. −0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号