首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe three new species of the genus Peptostreptococcus which were isolated from human specimens and were tentatively identified as Peptostreptococcus prevotii. These three organisms were not homologous with previously described type strains of the genus Peptostreptococcus. A total of 12 strains that were identified biochemically as P. prevotii were divided into five independent DNA similarity groups; 10 of these strains were divided into three similarity groups which exhibited significant phenotypic differences from previously described species. Therefore, we propose the following new species: Peptostreptococcus vaginalis for group 1 strains, Peptostreptococcus lacrimalis for group 2 strains, and Peptostreptococcus lactolyticus for group 3 strains. The type strain of P. vaginalis is strain GIFU 12669 (= JCM 8138), the type strain of P. lacrimalis is strain GIFU 7667 (= JCM 8139), and the type strain of P. lactolyticus is strain GIFU 8586 (= JCM 8140).  相似文献   

2.
The species Bacillus badius is one of the oldest members of the genus Bacillus isolated from faeces of children and was classified based on its ability to form endospores [8]. In 16S rRNA gene sequence and phylogenetic analysis, Bacillus badius DSM 23T shared low similarity (93.0%) and distant relationship with B. subtilis, the type species of the genus Bacillus indicating that it does not belong to this genus. Additional strains of the species, B. badius DSM 5610, DSM 30822 and B. encimensis SGD-V-25 (which has been recently reclassified as a member of this species) were included in the study to consider intraspecies diversity. Detailed molecular phylogenetic and comparative genome analysis clearly showed that the strains of B. badius were consistently retrieved outside the cluster of Bacillus sensu stricto and also distantly related to the genera Domibacillus and Quasibacillus. Further, the data from biochemical reactions (inability to ferment most carbohydrates), polar lipids profile (presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an aminophosphoglycolipid) and fatty acids supported the molecular analysis. Thus the four B. badius strains; DSM 23T, DSM 5610, DSM 30822 and SGD-V-25 displayed sufficient demarcating phenotypic characteristics that warrant their classification as members of a novel genus and single species, for which the name Pseudobacillus badius gen. nov. comb. nov. is proposed with Pseudobacillus badius DSM 23T (= ATCC 14574T) as the type strain. Additionally, based on our findings from phenotypic, chemotaxonomic and genotypic parameters, Bacillus wudalianchiensis DSM 100757T was reclassified as Pseudobacillus wudalianchiensis comb. nov.  相似文献   

3.
4.
The Isochrysidaceae is a family of non-calcifying organisms within the haptophyte order Isochrysidales. Isochrysis galbana, a species widely used as a food source in aquaculture, is the best-known representative of this family that contains three genera but only six described species. We sequenced partial nuclear small subunit (SSU) and large subunit rDNA and mitochondrial cytochrome oxidase 1 genes of 34 isochrysidacean culture strains (including authentic strains when available) and compared molecular phylogenetic inferences with cytological and ultrastructural observations. The isochrysidaceaen culture strain Isochrysis affinis galbana (Tahiti isolate), widely used in aquaculture and commonly known as T-Iso, is clearly genetically distinct from Isochrysis galbana, despite seemingly being morphologically identical. A strain with a similar ultrastructure to that of Isochrysis galbana except for the lack of body scales had sequences that were more similar to but still distinct from those of Isochrysis galbana. Dicrateria inornata, a species that lacks body scales, is classified within the Isochrysidaceae, but the SSU rDNA sequence of the authentic strain of this species matches that of Imantonia rotunda within another haptophye order, the Prymnesiales. D. inornata and Imantonia rotunda have similar ultrastructure except for the respective absence/presence of scales. These results lead us to propose the erection of one new genus (Tisochrysis gen. nov.) and two new species (Tisochrysis lutea sp. nov. and Isochrysis nuda sp. nov.). D. inornata is reclassified within the Prymnesiales, and Imantonia rotunda is transferred to this genus (Dicrateria rotunda comb. nov.).  相似文献   

5.
A polyphasic taxonomic study was performed on two strains of an unknown Gram-positive, asaccharolytic, nonspore-forming, obligately anaerobic coccus-shaped bacterium isolated from oral subgingival plaque of Labrador retriever dogs. Comparative 16S rRNA gene sequencing confirmed that these isolates were highly related to each other and formed a hitherto unknown linage within the clostridial rRNA XI cluster of organisms. Pairwise analysis demonstrated that the novel organism to be most closely related to members of the genus Peptostreptococcus with 16S rDNA gene sequence similarity values between 92.8% and 96.7%, respectively. The G + C DNA base composition was 30.8 mol% and the major cellular fatty acids included iso-C14:0, iso-C16:0, and iso-C16:0 DMA. Based on biochemical, chemotaxonomic, and phylogenetic evidence it is proposed that the unknown bacterium be classified as a new species, Peptostreptococcus canis sp. nov. The type strain is CCUG 57081T.  相似文献   

6.
Proterochampsids are crocodile-like, probably semi-aquatic, quadrupedal archosauriforms characterized by an elongated and dorsoventrally low skull. The group is endemic from the Middle-Late Triassic of South America. The most recently erected proterochampsid species is “Chanaresuchus ischigualastensis”, based on a single, fairly complete skeleton from the early Late Triassic Ischigualasto Formation of northwestern Argentina. We describe here in detail the non-braincase cranial and postcranial anatomy of this species and revisit its taxonomy and phylogenetic relationships. The phylogenetic analysis recovered ‘Chanaresuchus ischigualastensis’ as part of a trichotomy together with Gualosuchus reigi and Chanaresuchus bonapartei. Accordingly, “Chanaresuchus ischigualastensis” can be potentially more closely related to Gualosuchus reigi, or even Rhadinosuchus gracilis, than to Chanaresuchus bonapartei. In addition, after discussing previously claimed synapomorphies of Chanaresuchus, we could not find unambiguous support for the monophyly of the genus. As a result, we propose here the erection of the new genus Pseudochampsa for ‘Chanaresuchus ischigualastensis’, which results in the new combination Pseudochampsa ischigualastensis. The information provided here about the anatomy and taxonomy of Pseudochampsa ischiguaslastensis will be useful for future quantitative analyses focused on the biogeography and macroevolutionary history of proterochampsids.  相似文献   

7.
During a research project aimed at the study of the Culicinae fauna of Gabon and carried out in the National Park of La Lopé, we captured an unknown sandfly male specimen (genus Phlebotomus) by CDC miniature light trap belonging to a new species for Science. Furthermore, the originality of his genitalia does not allow us to include this species in one of the existing subgenus, thus in this paper we propose the creation of a new subgenus, as Phlebotomus (Legeromyia) multihamatus sp. nov., subg. nov. described from the National Park of La Lopé, through one male captured with CDC miniature light trap. A new species and a new subgenus of sandfly is characterised by a short style with three spines, a paramere wearing a basal hook as well as a basal pouch and the absence of basal lobe on the coxite. The originality of the genitalia of the male gives way to discussion about potential primary homologies between P. multihamatus sp. nov. and Phlebotomus (Abonnencius) fortunatarum, Phlebotomus (Anaphlebotomus) stantoni and Phlebotomus (Euphlebotomus) argentipes, which should be verified for future studies. The discovery of this new species in Gabon must encourage the study of sandflies in this country.  相似文献   

8.
A phylogenetic analysis based on 16S rRNA gene sequences reveals that Alysiella filiformis belongs to the family Neisseriaceae. The genus Simonsiella is phylogenetically separated by the genera Kingella and Neisseria. The species Simonsiella crassa and A. filiformis show a close phylogenetic relationship, with the 16S rDNA sequence similarity and the DNA-DNA hybridization representing 98.7% and 35%, respectively. Therefore, S. crassa should be transferred from the genus Simonsiella to the genus Alysiella as Alysiella crassa comb. nov. Simonsiella steedae and Simonsiella sp. of cat origin show strong genetic affinities and are distantly related with the type species of Simonsiella, S. mulleri. Thus, a new genus, Conchiformibium is proposed; Conchiformibium steedae comb. nov. and Conchiformibium kuhniae sp. nov. are accommodated in this new genus. On the basis of the phylogenetic, phenotypic and chemotaxonomic distinction from the genus Neisseria, N. denitrificans should be reclassified, for which a new genus and new combination Bergeriella denitrificans are proposed.  相似文献   

9.
10.
A thermotolerant Gram-staining negative and aerobic bacterium, designated strain YIM 77520T, was isolated from a geothermally heated soil sample collected at Rehai National Park, Tengchong, Yunnan Province, South-West China. Cells of the strain were found to be rod-shaped and colonies were light beige and circular. The strain was found to grow in the presence of 0–2 % (w/v) total salts (optimum, 0 %), at pH 6.0–8.0 (optimum, pH 7.0) and 25–55 °C (optimum, 45 °C). The only quinone detected was Q-8 and the genomic DNA G+C content was determined to be 66.9 mol%. The major fatty acids (>10 %) were identified as iso-C16:0 and iso-C15:0. The phospholipids were found to consist of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unknown phospholipids and three aminophospholipids. Based on the 16S rRNA gene sequence analysis, strain YIM 77520T was found to form a cluster with Lysobacter thermophilus YIM 77875T and showed the highest 16S rRNA gene sequence similarity to L. thermophilus YIM 77875T (96.0 %). These two strains formed a distinct lineage of the family ‘Xanthomonadaceae’. On the basis of the morphological and chemotaxonomic characteristics, as well as genotypic data, a new genus, Vulcaniibacterium gen. nov. is proposed with Vulcaniibacterium tengchongense sp. nov. as the type species. The type strain of V. tengchongense sp. nov. is strain YIM 77520T (=DSM 25623T = CCTCC AB 2011152T). Furthermore we propose that L. thermophilus Wei et al. 2012 is reclassified in the new genus as Vulcaniibacterium thermophilum comb. nov. (type strain YIM 77875T = CCTCC AB 2012064T = KCTC 32020T) based on polyphasic data.  相似文献   

11.
Thraustochytrium is the type genus of the family Thraustochytriaceae in the class Labyrinthulomycetes. This genus is characterized by zoospore formation, namely, shape of the cell wall of sporangia and presence or absence of a proliferous body. However, there are several issues associated with the taxonomy of this genus, and these include polyphyletic taxa and overlapping of taxonomic features among species. In particular, the first and second species, T. proliferum and T. globosum, were described based on observations of the morphological features of natural samples in the absence of culture conditions. Before addressing the taxonomic issues associated with this genus, it is important to consider the taxonomic features of each species, i.e., the life history under culture conditions and the phylogenetic position. The objective of the present study was to isolate T. globosum, the second described species in the genus Thraustochytrium, from the type locality. We successfully isolated strain NBRC 112723, which exhibited characteristic features of T. globosum. Under culture conditions, strain NBRC 112723 exhibited taxonomic features observed in other thraustochytrid species. Our molecular phylogeny indicated that this strain isolated from the type locality was located in an unidentified thraustochytrid group; moreover, some strains located in this group exhibited characteristic features of strain NBRC 112723. We clearly distinguished T. globosum based on the taxonomic criteria used to classify the T. proliferum type species. Therefore, we propose the establishment of a new genus, Monorhizochytrium, for the species T. globosum in the family Thraustochytriaceae.  相似文献   

12.
Corynebacterium pyogenes (Glage) differs to such an extent from the type species of Corynebacterium, Corynebacterium diphtheriae (Lehmann and Neumann), that it cannot be retained in this genus. Numerical phenetic and chemical data indicate a close relationship between Corynebacterium pyogenes and the species Actinomyces bovis (Harz). It is proposed that Corynebacterium pyogenes be reclassified in the genus Actinomyces, as Actinomyces pyogenes (Glage) comb.nov.  相似文献   

13.
Three strains (JA349T, JA553T, JA439) of phototrophic sulphur bacteria were isolated from marine habitats of India. 16S rRNA gene sequence of the three strains clustered phylogenetically with members of the genus Marichromatium of the family Chromatiaceae belonging to the class Gammaproteobacteria. All the strains shared highest sequence similarity with the type strains of Marichromatium spp. (96-99% sequence similarity) and the new strains were characterized based on polyphasic taxonomy. Strains JA349T and JA553T can be distinguished from closest relative species of the genus Marichromatium with respect to distinct differences in cellular polar lipids, fatty acids and carbon/nitrogen sources utilization. Both strains were distinctly related (<50% based on DNA-DNA hybridization) with the type strains of the genus Marichromatium. Multilocus Sequence Analysis (MLSA) of the concatenated five protein coding genes (fusA, pufM, dnaK, recA, soxB) along with internal transcribed spacer (ITS; 16S-23S rRNA) had sequence similarity of less than 92% with the type strains of Marichromatium spp. Distinct phenotypic, chemotaxonomic and molecular differences allow the separation of strains JA349T and JA553T into new species of the genus Marichromatium for which, we propose the names Marichromatium litoris sp. nov. and Marichromatium chrysaorae sp. nov., respectively.  相似文献   

14.

We present polyphasic taxonomic data to demonstrate that strain 125703-2019T, a human blood isolate, represents a novel species within the genus Pseudoclavibacter, and to reclassify the illegitimate Zimmermannella alba Lin et al., 2004 as Pseudoclavibacter albus comb. nov. Upon primary isolation, strain 125703-2019T could not be identified reliably using MALDI-TOF mass spectrometry during routine diagnostic work, but partial 16S rRNA gene sequence analysis revealed that it belonged to the genus Pseudoclavibacter. Average nucleotide identity and digital DNA-DNA hybridisation analyses confirmed that it represented a novel species within this genus. A detailed physiological characterisation yielded differential tests between the novel species and its nearest neighbor taxa, which could also be differentiated using MALDI-TOF mass spectrometry. We propose to formally classify this strain into the novel species Pseudoclavibacter triregionum sp. nov., with strain 125703-2019T (=?R-76471T, LMG 31777T, CCUG 74796T) as the type strain. The whole-genome assembly of strain 125703-2019T has a size of 2.4 Mb and a G?+?C content of 72.74%. A Pseudoclavibacter pangenome analysis revealed that 667 gene clusters were exclusively present in strain 125703-2019T. While these gene clusters were enriched in several COG functional categories, this analysis did not reveal functions that explained the occurrence of this species in human infection. Finally, several phylogenetic and phylogenomic analyses demonstrated that the genus Pseudoclavibacter is polyphyletic with Pseudoclavibacter soli and Pseudoclavibacter caeni representing a unique and deeply branching line of descent within the family Microbacteriaceae. We therefore also propose to reclassify both species into the novel genus Caespitibacter gen. nov. as Caespitibacter soli comb. nov. and Caespitibacter caeni comb. nov., respectively, and with C. soli comb. nov. as the type species.

  相似文献   

15.
Chassalia magnificens, a new species from the Albertine Rift in eastern Democratic Republic of Congo, is described and illustrated. The species is recognised inter alia by its large stipules and montane habitat. Chassalia chrysoclada is a new combination for a widespread, but hitherto overlooked, central African species originally described in the genus Psychotria. Chassalia chrysoclada is related to C. pteropetala (K. Schum.) Cheek but lacks the bicostate twigs and dorsally winged corolla lobes of that species.  相似文献   

16.
Three plant rhizogenic strains O132T, O115 and O34 isolated from Cucumis sp. L. were assessed for taxonomic affiliation by using polyphasic taxonomic methods. Based on the results of the sequence analysis of the 16S rRNA and multilocus sequence analysis (MLSA) of the three housekeeping genes atpD, recA and rpoB, all the strains were clustered within the genus Agrobacterium where they form a novel branch. Their closest relative was Agrobacterium tomkonis (genomospecies G3). Moreover, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) comparisons between strains O132T and O34 and their closest relatives provided evidence that they constitute a new species, because the obtained values were significantly below the threshold considered as a borderline for the species delineation. Whole-genome phylogenomic analysis also indicated that the cucumber strains are located within the separate, well-delineated biovar 1 sub-clade of the genus Agrobacterium. Furthermore, the physiological and biochemical properties of these strains allowed to distinguish them from their closest related species of the genus Agrobacterium. As a result of the performed overall characterization, we propose a new species as Agrobacterium cucumeris sp. nov., with O132T (=CFBP 8997T = LMG 32451T) as the type strain.  相似文献   

17.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.  相似文献   

18.
19.
Recent studies have revealed that the “lower” marine ciliates are far more diverse than previously suspected. During a survey on the ciliate fauna in coastal waters of Qingdao, northern China, we have isolated about 30 new or poorly known taxa. In the present study two colepid species are investigated, Nolandia orientalis spec. nov. and Pinacocoleps similis (Kahl, 1933) comb. nov. (basionym: Coleps similis Kahl, 1933). Their morphology and infraciliature are documented based on living observations and silver impregnations. The new species Nolandia orientalis differs from the type species N. nolandi mainly in the structure of tier plates. The structure of the tier plates was also the basis for transferring Coleps similis Kahl, 1933 to the genus Pinacocoleps and for three further new combinations: Pinacocoleps heteracanthus (Noland, 1937) comb. nov. (basionym: Coleps heteracanthus Noland, 1937), P. spiralis (Noland, 1937) comb. nov. (basionym Coleps spiralis Noland, 1937) and Pinacocoleps arenarius (Bock, 1952) comb. nov. (basionym: Coleps arenarius Bock, 1952).  相似文献   

20.
In the course of a bioprospective study of marine prokaryotes for cosmetic purposes, four strains, MD_567T, MD_652T, MD_674 and PS_109T, were isolated that 16S rRNA gene affiliation indicated could represent three new species within the family Alteromonadaceae. A thorough phylogenetic, genomic and phenotypic taxonomic study confirmed that the isolates could be classified as three new taxa for which we propose the names Alteromonas antoniana sp. nov., Alteromonas lipotrueae sp. nov. and Alteromonas lipotrueiana sp. nov. In addition, the consistent monophyletic nature of the members of the genera Alteromonas and Salinimonas showed that both taxa should be unified, and therefore we also propose the reclassification of the genus Salinimonas within Alteromonas, as well as new combinations for the species of the former. As the specific epithets profundi and sediminis are already used for Alteromonas species, we created the nomina novaAlteromonas alteriprofundi” nom. nov. and Alteromonas alterisediminis nom. nov. to accommodate the new names for “Salinimonas profundi” and Salinimonas sediminis. Whole genome comparisons also allowed us to detect the unexpected codification of aromatic hydrocarbon biodegradative compounds, such as benzoate and catechol, whose activity was then demonstrated phenotypically. Finally, the high genomic identity between the type strains of Alteromonas stellipolaris and Alteromonas addita indicated that the latter is a junior heterotypic synonym of Alteromonas stellipolaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号