首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomerization of human Gadd45a protein   总被引:8,自引:0,他引:8  
Gadd45a is an 18-kDa acidic protein that is induced by genotoxic and certain other cellular stresses. The exact function of this protein is not known. However, there is evidence for its involvement in growth control, maintenance of genomic stability, DNA repair, cell cycle control, and apoptosis. Consistently, Gadd45a has previously been shown to interact in vitro and/or in vivo with a number of proteins playing central roles in these cellular processes: proliferating cell nuclear antigen, p21(Cip1/Waf1), Cdc2-CyclinB complex, MTK1, and histones. Adding to this complexity, we have found that Gadd45a self-associates in solution, both in vitro and when expressed in the cell. Moreover, Gadd45a can complex with the two other members of the Gadd45 family of stress-induced proteins, human Gadd45b (MyD118) and Gadd45g (CR6). Gel-exclusion chromatography, native gel electrophoretic analysis, enzyme-linked immunosorbent assay, and chemical cross-linking showed that recombinant Gadd45a forms dimeric, trimeric, and tetrameric species in vitro, the dimers being the predominant form. Deletion mutant and peptide scanning analyses suggest that Gadd45a has two self-association sites: within N-terminal amino acids 33-61 and within 40 C-terminal amino acids. Despite the low abundance of Gadd45a in the cell, oligomer-forming concentrations can probably be achieved in the foci-like nuclear structures formed by the protein upon overexpression. Evidence for a potential role of Gadd45a self-association in altering DNA accessibility on damaged nucleosomes is presented.  相似文献   

2.
MyD118 and Gadd45 are related genes encoding for proteins that play important roles in negative growth control, including growth suppression and apoptosis. MyD118 and Gadd45 are related proteins that previously were shown to interact with proliferating cell nuclear antigen (PCNA), implicated in DNA replication, DNA repair, and cell cycle progression. To establish the role of MyD118 and Gadd45 interactions with PCNA, in this work we sought to identify the interacting domains and analyze the significance of this interaction in negative growth control. Using complementary in vivo and in vitro interaction assays the N-terminal (1-46) and middle (100-127) regions of PCNA were identified as harboring MyD118- and Gadd45 interacting domains, whereas PCNA interacting domains within MyD118 and Gadd45 were localized to the C termini of these proteins (amino acids 114-156 and 137-165, respectively). These findings provide first evidence that similar domains within MyD118 and Gadd45 mediate interactions with PCNA. Importantly, ectopic expression of MyD118 or Gadd45 N-terminal peptides, lacking the PCNA interacting domain, was found to suppress colony formation or induce apoptosis more efficiently than the full-length proteins. These findings suggest that interaction of MyD118 or Gadd45 with PCNA, in essence, serves to impede negative growth control.  相似文献   

3.
Gadd45a (Gadd45), Gadd45b (MyD118), and Gadd45g (CR6) constitute a family of evolutionarily conserved, small, acidic, nuclear proteins, which have been implicated in terminal differentiation, growth suppression, and apoptosis. How Gadd45 proteins function in negative growth control is not fully understood. Recent evidence has implicated Gadd45a in inhibition of cdc2/cyclinB1 kinase and in G2/M cell cycle arrest. Yet, whether Gadd45b and/or Gadd45g function as inhibitors of cdc2/cyclinB1 kinase and/or play a role in G2/M cell cycle arrest has not been fully established. In this work, we show that Gadd45b and Gadd45g specifically interact with the Cdk1/CyclinB1 complex, but not with other Cdk/Cyclin complexes, in vitro and in vivo. Data also has been obtained that Gadd45b and Gadd45g, as well as GADD45a, interact with both Cdk1 and cyclinB1, resulting in inhibition of the kinase activity of the Cdk1/cyclinB1 complex. Inhibition of Cdk1/cyclinB1 kinase activity by Gadd45b and Gadd45a was found to involve disruption of the complex, whereas Gadd45g did not disrupt the complex. Moreover, using RKO lung carcinoma cell lines, which express antisense Gadd45 RNA, data has been obtained, which indicates that all three Gadd45 proteins are likely to cooperate in activation of S and G2/M checkpoints following exposure of cells to UV irradiation.  相似文献   

4.
5.
Gadd45 proteins have been implicated in the cellular response to physiological or environmental stress and the accompanying cell cycle arrest, DNA repair, cell survival and senescence or apoptosis. Although their molecular function is well studied, the expression and role of Gadd45 genes during embryonic development in mice is largely unknown. Here we provide a comprehensive comparison of Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. In situ hybridizations on sectioned and whole mouse embryos show most prominent Gadd45a expression in the tip of the closing neural tube, the cranial and dorsal root ganglia and the somites. Mouse Gadd45b is expressed strongly in the chorion, but only weakly in the embryo proper, including somites and limb buds. Murine Gadd45g expression strongly resembles Xenopus and medaka fish expression in primary neuron precursors and post-mitotic neurons, indicating a conserved role for Gadd45g in vertebrate neurogenesis. Additionally, Gadd45 genes show conserved expression during somitogenesis. In summary, Gadd45 genes are expressed in evolutionary conserved, but also divergent domains, which predominantly encompass areas of cell differentiation, consistent with their established function in growth arrest and DNA demethylation.  相似文献   

6.
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. What deterministic factors dictate whether Gadd45 and partner proteins function in either cell survival or apoptosis remains to be determined. An attractive working model to consider is that the extent of cellular/DNA damage, in a given cell type, dictates the association of different Gadd45 proteins with particular partner proteins, which determines the outcome.  相似文献   

7.
8.
9.
Gadd45α is a nuclear protein encoded by a DNA damage-inducible gene. Through its interactions with other proteins, Gadd45α participates in the regulation of DNA repair, cell cycle, cell proliferation, and apoptosis. The NMR structure of human Gadd45α has been determined and shows an α/β fold with two long disordered and flexible regions at the N terminus and one of the loops. Human Gadd45α is predominantly monomeric in solution but exists in equilibrium with dimers and other oligomers whose population increases with protein concentration. NMR analysis shows that Aurora A interacts through its N-terminal domain with a region of human Gadd45α encompassing the site of dimerization, suggesting that the oligomerization of Gadd45α could be a regulatory mechanism to modulate its interactions with Aurora A, and possibly with other proteins too. However, Gadd45α appears to interact only weakly with PCNA through its flexible loop, in contrast with previous and contradictory reports.  相似文献   

10.
HDAC inhibitors (HDIs) induce irreversible cell cycle arrest and senescence in E1A+Ras expressing cells. Furthermore, HDIs activate Gadd45α/NF-κB signaling pathway to suppress apoptosis thereby promoting the cell survival. Here, to clarify the role of Gadd45α in realization of the antiapoptotic program, we compared wild-type E1A+Ras cells and the cells with knockout of gadd45α gene (Gadd45α−/− cells). As in Gadd45α-expressing E1A+Ras cells, HDIs induce irreversible cell cycle arrest in Gadd45α−/− cells, but the arrested cells do not senesce and eventually die due to activation of the apoptotic death program. These data suggest that the expression of Gadd45α is involved in maintaining the balance of pro- and anti-apoptotic stimuli, while lack or loss of Gadd45 directs the cells to apoptosis after HDIs treatment. Appropriately Gadd45α-deficient cells demonstrate a higher level of pro-apoptotic signals, whereas the anti-apoptotic program is suppressed. The elevated apoptotic background of Gadd45α−/− cells is accompanied by higher levels of Ser15-phosphorylated p53 and p21/Waf1 proteins that additionally commit the cells to HDIs-induced apoptosis. Additionally, loss of Gadd45α protein activates the DDR signaling pathway as demonstrated by nuclear pATM staining, accumulation of γH2AX foci and an increase of single-strand DNA breaks. Thus, in wild-type E1A+Ras cells the p53-dependent expression of Gadd45α is necessary not only for DNA repair and HDI-induced cellular senescence, but also to withstand to apoptosis after DNA damage and stress. Therefore the use of HDIs in combination with agents that block Gadd45α function may have promise for cancer therapy.  相似文献   

11.
Zhan Q 《Mutation research》2005,569(1-2):133-143
Mammalian cells exhibit complex, but intricate cellular responses to genotoxic stress, including cell cycle checkpoints, DNA repair and apoptosis. Inactivation of these important biological events may result in genomic instability and cell transformation, as well as alterations of therapeutic sensitivity. Gadd45a, a p53- and BRCA1-regulated stress-inducible gene, has been characterized as one of the important players that participate in cellular response to a variety of DNA damage agents. Interestingly, the signaling machinery that regulates Gadd45a induction by genotoxic stress involves both p53-dependent and -independent pathways; the later may employ BRCA1-related or MAP kinase-mediated signals. Gadd45a protein has been reported to interact with multiple important cellular proteins, including Cdc2 protein kinase, proliferating cell nuclear antigen (PCNA), p21Waf1/Cip1 protein, core histone protein and MTK/MEKK4, an up-stream activator of the JNK/SAPK pathway, indicating that Gadd45a may play important roles in the control of cell cycle checkpoint, DNA repair process, and signaling transduction. The importance of Gadd45a in maintaining genomic integrity is well manifested by the demonstration that disruption of endogenous Gadd45a in mice results in genomic instability and increased carcinogenesis. Therefore, Gadd45a appears to be an important component in the cellular defense network that is required for maintenance of genomic stability.  相似文献   

12.
Cell cycle growth arrest is an important cellular response to genotoxic stress. Gadd45, a p53-regulated stress protein, plays an important role in the cell cycle G(2)-M checkpoint following exposure to certain types of DNA-damaging agents such as UV radiation and methylmethane sulfonate. Recent findings indicate that Gadd45 interacts with Cdc2 protein and inhibits Cdc2 kinase activity. In the present study, a series of Myc-tagged Gadd45 deletion mutants and a Gadd45 overlapping peptide library were used to define the Gadd45 domains that are involved in the interaction of Gadd45 with Cdc2. Both in vitro and in vivo studies indicate that the interaction of Gadd45 with Cdc2 involves a central region of the Gadd45 protein (amino acids 65-84). The Cdc2-binding domain of Gadd45 is also required for Gadd45 inhibition of Cdc2 kinase activity. Sequence analysis of the central Gadd45 region reveals no homology to inhibitory motifs of known cyclin-dependent kinase inhibitors, indicating that the Cdc2-binding and -inhibitory domains on Gadd45 are a novel motif. The peptide containing the Cdc2-binding domain (amino acids 65-84) disrupted the Cdc2-cyclin B1 protein complex, suggesting that dissociation of this complex results from a direct interaction between the Gadd45 and Cdc2 proteins. GADD45-induced cell cycle G(2)-M arrest was abolished when its Cdc2 binding motif was disrupted. Importantly, a short term survival assay demonstrated that GADD45-induced cell cycle G(2)-M arrest correlates with GADD45-mediated growth suppression. These findings indicate that the cell cycle G(2)-M growth arrest mediated by GADD45 is one of the major mechanisms by which GADD45 suppresses cell growth.  相似文献   

13.
Gadd45α, β, and γ proteins, also known as growth arrest and DNA damage-inducible factors, have a number of cellular functions, including cell-cycle regulation and propagation of signals produced by a variety of cellular stimuli, maintaining genomic stability and apoptosis. Furthermore, Gadd45β has been indicated as a major player in the endogenous NF-κB-mediated resistance to apoptosis in a variety of cell lines. In fibroblasts this mechanism involves the inactivation of MKK7, the upstream activator of JNK, by direct binding within the kinase ATP pocket. On the basis of a number of experimental data, the structures of Gadd45β and the Gadd45β-MKK7 complex have been predicted recently and data show that interactions are mediated by acidic loops 1 and 2, and helices 3 and 4 of Gadd45β. Here, we provide further evidence that Gadd45β is a prevailingly α-helical protein and that in solution it is able to form non covalent dimers but not higher-order oligomers, in contrast to what has been reported for the homologous Gadd45α. We show that the contact region between the two monomers is comprised of the predicted helix 1 (residues Q17-Q33) and helix 5 (residues K131-R146) of the protein, which appear to be antiparallel and to form a large dimerisation surface not involved in MKK7 recognition. The results suggest the occurrence of a large complex containing at least an MKK7-Gadd45β:Gadd45β-MKK7 tetrameric unit whose complexity could be further increased by the dimeric nature of the isolated MKK7.  相似文献   

14.
15.
16.
17.
Tong T  Ji J  Jin S  Li X  Fan W  Song Y  Wang M  Liu Z  Wu M  Zhan Q 《Molecular and cellular biology》2005,25(11):4488-4500
Gadd45a, a p53- and BRCA1-regulated stress protein, has been implicated in the maintenance of genomic fidelity, probably through its roles in the control of cell cycle checkpoint and apoptosis. However, the mechanism(s) by which Gadd45a is involved in the induction of apoptosis remains unclear. We show here that inducible expression of Gadd45a protein causes dissociation of Bim, a Bcl2 family member, from microtubule-associated components and translocation to mitochondria. The Bim accumulation in mitochondria enhances interaction of Bim with Bcl-2, relieves Bax from Bcl-2-bound complexes, and subsequently results in release of cytochrome c into the cytoplasm. Suppression of endogenous Bim greatly inhibits Gadd45a induction of apoptosis. Interestingly, Gadd45a interacts with elongation factor 1alpha (EF-1alpha), a microtubule-severing protein that plays an important role in maintaining cytoskeletal stability, and inhibits EF-1alpha-mediated microtubule bundling, indicating that the interaction of Gadd45a with EF-1alpha disrupts cytoskeletal stability. A mutant form of Gadd45a harboring a deletion of EF-1alpha-binding domain fails to inhibit microtubule stability and to induce Bim translocation to mitochondria. Furthermore, coexpression of EF-1alpha antagonizes Gadd45a's property of suppressing cell growth and inducing apoptosis. These findings identify a novel link that connects stress protein Gadd45a to the apoptotic machinery and address the importance of cytoskeletal stability in apoptotic response to DNA damage.  相似文献   

18.
Gadd45 mutations are uncommon in human tumour cell lines   总被引:1,自引:0,他引:1  
GADD45 is an evolutionarily conserved gene that encodes a small acidic, nuclear protein and is an example of a p53 responsive gene. Gadd45 protein has been shown to interact with PCNA and also p21waf1. It has been implicated in growth arrest, DNA repair, chromatin structure and signal transduction. The confusing biochemical data has been clarified by the demonstration that Gadd45 null mice have a phenotype strikingly similar to that of p53 null mice, being tumour prone and showing marked genomic instability. We have tested the hypothesis that mutations in the GADD45 coding region might substitute for p53 abnormalities in tumour cell lines where p53 is wild type. After generating cDNA from mRNA in a panel of 24 cell lines we sequenced the GADD45 cDNA and have demonstrated that no mutations can be observed, even in the p53 wild type cell lines. Such data suggest that Gadd45 mutations are uncommon in human cancer. From this we postulate that, despite the phenotype of the GADD45 null mouse, GADD45 is unlikely to be the key mechanistic determinant of the tumour suppressor activity of the p53 pathway.
Note on nomenclature: We have employed GADD45 to designate the gene and Gadd45 to designate the encoded protein. This gene has also be denoted GADD45 α elsewhere in the literature.  相似文献   

19.
Gadd45 genes encode a small family of multifunctional stress response proteins, mediating cell proliferation, apoptosis, DNA repair and DNA demethylation. Their role during embryonic development is incompletely understood. Here we identified Xenopus Gadd45b, compared Gadd45a, Gadd45b and Gadd45g expression during Xenopus embryogenesis, and characterized their gain and loss of function phenotypes. Gadd45a and Gadd45g act redundantly and double Morpholino knock down leads to pleiotropic phenotypes, including shortened axes, head defects and misgastrulation. In contrast, Gadd45b, which is expressed at very low levels, shows little effect upon knock down or overexpression. Gadd45ag double Morphants show reduced neural cell proliferation and downregulation of pan-neural and neural crest markers. In contrast, Gadd45ag Morphants display increased expression of multipotency marker genes including Xenopus oct4 homologs as well as gastrula markers, while mesodermal markers are downregulated. The results indicate that Gadd45ag are required for early embryonic cells to exit pluripotency and enter differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号