共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate–glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte leakage from seeds. Simultaneously the increase of reactive oxygen species (ROS) (superoxide radical – O2− and hydrogen peroxide – H2O2) production was observed. The results indicate that remarkable changes in the concentrations and redox status of ascorbate and glutathione occur in embryo axes and cotyledons. After shedding, concentrations of ascorbic acid (ASA) and the reduced form of glutathione (GSH) are higher in embryo axes than in cotyledons and their redox status is high in both embryo parts. Cotyledons in freshly shed seeds are devoid of GSH. At the first stages of desiccation, up to a level of 43% of moisture content, ASA content in embryo axes and GSH content in cotyledons increased. Below this level of moisture content, the antioxidant contents as well as their redox status rapidly decreased. The enzymes of the ascorbate–glutathione pathway: ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate reductase (MR) (EC 1.6.5.4), dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) increased their activity during desiccation, but mainly in embryonic axes. The changes are probably required for counteracting the production of ROS during desiccation. The relationship between ascorbate and glutathione metabolism and their relevance during desiccation of recalcitrant Acer saccharinum seeds is discussed. 相似文献
2.
Summary The prominent spontaneous reaction of aminoethylcysteine ketimine in the neutral pH range is the concentration-dependent dimerization (Hermann, 1961). The carboxylated dimer first produced loses the free carboxyl yielding the more stable decarboxylated dimer (named simply the dimer in this note). In the search for a possible biochemical activity of this uncommon tricyclic compound we have assayed whether it could interact with oxygen reactive species (H2O2, O2
–,OH) thus exhibiting a scavenging effect of possible biomedical interest. The dimer interacts with H2O2 producing compounds detectable by chromatographic procedures. The presence of Fe2+ stimulates the oxidative reaction by yielding the hydroxyl radical (the Fenton reaction). Using the system xanthine oxidase-xanthine as superoxide producer, the dimer oxidation by O2
– has also been documented. Among the oxidation products the presence of taurine and cysteic acid has been established. Identification of remaining oxidation products and investigation of the possible function of the dimer as a biological scavenger of oxygen reactive species are now oncoming.Abbreviations HPLC
high performance liquid chromatography
- AAÅ
amino acid analyzer
- SOD
superoxide dismutase
- EDTA
ethylenediaminetetraacetic acid 相似文献
3.
The present work reports reactions of plastoquinol (PQH2-9) and plastoquinone (PQ-9) in organic solvents and summarizes the literature to understand similar reactions in thylakoids. In thylakoids, PQH2-9 is oxidized by the cytochrome b6/f complex (Cyt b6/f) but some PQH2-9 is also oxidized by reactions in which oxygen acts as an electron acceptor and is converted to reactive oxygen species (ROS). Furthermore, PQH2-9 reacts with ROS. Light enhances oxygen-dependent oxidation of PQH2-9. We examined the oxidation of PQH2-9 via dismutation of PQH2-9 and PQ-9 and scavenging of the superoxide anion radical (O2?) and hydrogen peroxide (H2O2) by PQH2-9. Oxidation of PQH2-9 via dismutation to semiquinone was slow and independent of pH in organic solvents and in solvent/buffer systems, suggesting that intramembraneous oxidation of PQH2-9 in darkness mainly proceeds via reactions catalyzed by the plastid terminal oxidase and cytochrome b559. In the light, oxidation of PQH2-9 by singlet oxygen and by O2? formed in PSI contribute significantly. In addition, Cyt b6/f forms H2O2 with a PQH2-9 dependent mechanism. Measurements of the reaction of O2? with PQH2-9 and PQ-9 in acetonitrile showed that O2? oxidizes PQH2-9, forming PQ-9 and several PQ-9-derived products. The rate constant of the reaction between PQH2-9 and O2? was found to be 104?M?1?s?1. H2O2 was found to oxidize PQH2-9 to PQ-9, but failed to oxidize all PQH2-9, suggesting that the oxidation of PQH2-9 by H2O2 proceeds via deprotonation mechanisms producing PQH?-9, PQ2?-9 and the protonated hydrogen peroxide cation, H3O2+. 相似文献
4.
Pedraza-Chaverrí J Medina-Campos ON Avila-Lombardo R Berenice Zúñiga-Bustos A Orozco-Ibarra M 《Life sciences》2006,78(7):761-770
It was studied if the ability of aqueous garlic extracts to scavenge superoxide anion (O(2)(*-)), hydrogen peroxide (H(2)O(2)), and hydroxyl radical (OH(*)) is altered in the following aqueous preparations: (a) extracts of boiled garlic cloves (BG), (b) extracts of microwave-treated garlic cloves (MG), and (c) extracts of pickled garlic (PG), and heated extracts of (a) garlic powder (HGP) and (b) raw garlic (HRG). The data were compared with the unheated raw garlic (RG) or with the unheated garlic powder (GP). Extracts of GP and RG scavenged O(2)(*-), H(2)O(2), and OH(*) in a concentration-dependent way. The reactive oxygen species scavenging capacity was not decreased in the aqueous garlic extracts except in MG and HRG (for O(2)(*-)) and in HGP and PG (for H(2)O(2)). The heating before or after garlic cutting was unable to eliminate the capacity of the extracts to scavenge H(2)O(2), O(2)(*-), and OH(*). 相似文献
5.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications. 相似文献
6.
Cell culture media (RPMI 1640, Dulbecco’s Minimal Essential Medium and yeast extract-peptone-glucose medium) were found to oxidize dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, and to generate spin adduct of 5,5′-dimethyl-1-pyrroline N-oxide, which indicates formation of reactive oxygen species (ROS). The production of ROS was light dependent. The main component of the media responsible for the generation of ROS was riboflavin, but tryptophan, tyrosine, pyridoxine, and folic acid enhanced the effect of riboflavin. These observations point to exposure of cells to ROS under in vitro culture conditions. 相似文献
7.
Reactive nitrogen species (RNS) and oxygen species (ROS) have been reported to modulate the function of nitric oxide synthase (NOS); however, the precise dose-dependent effects of specific RNS and ROS on NOS function are unknown. Questions remain unanswered regarding whether pathophysiological levels of RNS and ROS alter NOS function, and if this alteration is reversible. We measured the effects of peroxynitrite (ONOO-), superoxide (O2.-), hydroxyl radical (.OH), and H2O2 on nNOS activity. The results showed that NO production was inhibited in a dose-dependent manner by all four oxidants, but only O2.- and ONOO- were inhibitory at pathophysiological concentrations (50muM). Subsequent addition of tetrahydrobiopterin (BH4) fully restored activity after O2.- exposure, while BH4 partially rescued the activity decrease induced by the other three oxidants. Furthermore, treatment with either ONOO- or O2.- stimulated nNOS uncoupling with decreased NO and enhanced O2.- generation. Thus, nNOS is reversibly uncoupled by O2.- (50muM), but irreversibly uncoupled and inactivated by ONOO-. Additionally, we observed that the mechanism by which oxidative stress alters nNOS activity involves not only BH4 oxidation, but also nNOS monomerization as well as possible degradation of the heme. 相似文献
8.
Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism 总被引:10,自引:0,他引:10
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a “ROS sink” represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress. 相似文献
9.
10.
Arimura T Kojima-Yuasa A Watanabe S Suzuki M Kennedy DO Matsui-Yuasa I 《Chemico-biological interactions》2003,145(3):337-347
Herbal medicines are increasingly being utilized to treat a wide variety of disease processes. Evening primrose extract (EPE) is extracted from Oenothera biennis L., one species of evening primroses, which has been shown to have several pharmacological effects. However, anti-tumor activity in the extract of defatted seeds of O. biennis L. has not been defined thus far. In this study, we identified the major biochemical changes upon EPE treatment and investigated the functional relationship between these changes. We found that EPE-induced apoptosis in Ehrlich ascites tumor cells as evidenced by morphological changes. Furthermore, our results demonstrated rapid increase of intracellular peroxides levels, loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol. These results suggest that the rapid increase of intracellular peroxides levels after addition of EPE triggers off induction of apoptosis. 相似文献
11.
Beech seed physiology, including the effect of stress proteins like late embryogenesis abundant (LEA) and small heat shock proteins (sHSP) on viability during storage, is not fully understood. Four lots of beech (Fagus sylvatica L.) seeds have been stored for 1, 4, 6 and 8 years at −10 °C and 8–9% moisture content (MC). Under these conditions, the germination capacity ranges from 81.5% to 100% in the youngest seeds. However, the seeds decrease in vigour with prolonged time of storage. Dehydrins and dehydrin-like proteins were identified both in cotyledons and embryonic axes of the dry stored seeds. In general, decreased contents of LEA proteins as well as reduced content of total soluble protein were detected during prolonged storage. The contents of soluble proteins in embryonic axes and nearly all detected dehydrins and dehydrin-like proteins were correlated with germination capacity. Moreover a sHSP with molecular mass of approximately 22 kDa was identified. The largest content of this protein was observed in the oldest seeds, especially in embryonic axes. The proteins identified may play a protective role during water deficit and storage. 相似文献
12.
Chilling-enhanced photooxidation: The production,action and study of reactive oxygen species produced during chilling in the light 总被引:24,自引:0,他引:24
Robert R. Wise 《Photosynthesis research》1995,45(2):79-97
Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O
2
,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a leakage of absorbed light energy from the photosynthetic electron transport chain. Cold temperatures slow the energy-consuming Calvin-Benson Cycle enzymes more than the energy-transducing light reactions, thus causing leakage of energy to oxygen. ROS and MDA are removed, in part, by the action of antioxidant enzymes of the Halliwell/Foyer/Asada Cycle. Chloroplasts also contain high levels of both lipid- and water-soluble antioxidants that act alone or in concert with the HFA Cycle enzymes to scavenge ROS. The ability of chilling-resistant plants to maintain active HFA Cycle enzymes and adequate levels of antioxidants in the cold and light contributes to their ability to resist chilling-enhanced photooxidation. The absence of this ability in chilling-sensitive species makes them susceptible to chilling-enhanced photooxidation. Chloroplasts may reduce the generation of ROS by dissipating the absorbed energy through a number of quenching mechanisms involving zeaxanthin formation, state changes and the increased usage of reducing equivalents by other anabolic pathways found in the stroma. During chilling in the light, ROS produced in chilling-sensitive plants lower the redox potential of the chloroplast stroma to such a degree that reductively-activated regulatory enzymes of the Calvin Cycle, sedohepulose 1,7 bisphosphatase (EC 3.1.3.37) and fructose 1,6 bisphosphatase (EC 3.1.3.11), are oxidatively inhibited. This inhibition is reversible in vitro with a DTT treatment indicating that the enzymes themselves are not permanently damaged. The inhibition of SBPase and FBPase may fully explain the inhibition in whole leaf gas exchange seen upon the rewarming of chilling-sensitive plants chilled in the light. Methods for the study of ROS in chilling-enhanced photooxidation and challenges for the future are discussed.Abbreviations ASP
ascorbate-specific peroxidase
- -TH
reduced -tocopherol
- DTT
dithiothreitol
- FBP
fructose 1,6 bisphosphate
- FBPase
fructose 1,6 bisphosphatase (EC 3.1.3.11)
- HFA Cycle
the Halliwell/Foyer/Asada Cycle responsible for the enzymatic removal of ROS in the chloroplast stroma
- MDA
monodehydroascorbate radical
- MDAR
monodehydroascorbate reductase
- ROS
reactive oxygen species
- SBP
sedohepulose 1,7 bisphosphate
- SBPase
sedohepulose 1,7 bisphosphatase (EC 3.1.3.37)
- SOD
superoxide dismutase 相似文献
13.
14.
Jian Sun 《Archives of biochemistry and biophysics》2010,494(2):130-1013
Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen/nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO−) produced the greatest change in NO generation rate, ∼95% decrease, and BH4 only partially restored this loss of activity. Superoxide () greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced production from iNOS, while ONOO− had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO− induces irreversible enzyme inactivation and decreases both NO and production. 相似文献
15.
Zielonka J Zielonka M Sikora A Adamus J Joseph J Hardy M Ouari O Dranka BP Kalyanaraman B 《The Journal of biological chemistry》2012,287(5):2984-2995
Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants. 相似文献
16.
17.
The involvement of oxidative stress in the toxicity of chromium (VI) and chromium (III) has been proposed. We have therefore examined the effects of these cations on the production of superoxide anion, nitric oxide (NO), and DNA single strand breaks (SSB) in J774A.1 macrophage cells in culture as well as the effects on lactate dehydrogenase (LDH) leakage and cell viability. Following a 48 hour incubation, over twofold increases in superoxide anion and NO production were observed at concentrations of approximately 0.30 and 50 μM for Cr (VI) and Cr (III), respectively. The patterns of cell viability and LDH leakage paralleled superoxide anion and NO production for Cr (VI) and Cr (III). A 50% decrease in viability was observed at approximately the concentrations that produced a twofold increase in superoxide and NO production. Concentration-dependent increases in DNA-SSB were observed after incubation with Cr (III) with maximum increases occurring at a concentration of approximately 60 μM. Cr (VI) had no effect on the incidence of DNA-SSB at any of the tested concentrations. The results indicate that Cr (VI) and Cr (III) are toxic to the J774A.1 cell line, and the toxicity may be due at least in part to an oxidative stress induced by the production of reactive oxygen species. © 1996 John Wiley & Sons, Inc. 相似文献
18.
Hydrogen peroxide (H2O2) as a source of reactive oxygen species (ROS) significantly stimulated germination of switchgrass (Panicum virgatum L.) seeds with an optimal concentration of 20 mM at both 25 and 35°C. For non-dormant switchgrass seeds exhibiting different
levels of germination, treatment with H2O2 resulted in rapid germination (<3 days) of all germinable seeds as compared to seeds placed on water. Exposure to 20 mM H2O2 elicited simultaneous growth of the root and shoot system, resulting in more uniform seedling development. Seeds of big bluestem
(Andropogon gerardii Vitman) and indiangrass [Sorghastrum nutans (L.) Nash] also responded positively to H2O2 treatment, indicating the universality of the effect of H2O2 on seed germination in warm-season prairie grasses. For switchgrass seeds, abscisic acid (ABA) and the NADPH-oxidase inhibitor,
diphenyleneiodonium (DPI) at 20 μM retarded germination (radicle emergence), stunted root growth and partially inhibited NADPH-oxidase
activity in seeds. H2O2 reversed the inhibitory effects of DPI and ABA on germination and coleoptile elongation, but did not overcome DPI inhibition
of root elongation. Treatment with H2O2 appeared to enhance endogenous production of nitric oxide, and a scavenger of nitric oxide abolished the peroxide-responsive
stimulation of switchgrass seed germination. The activities and levels of several proteins changed earlier in seeds imbibed
on H2O2 as compared to seeds maintained on water or on ABA. These data demonstrate that seed germination of warm-season grasses is
significantly responsive to oxidative conditions and highlights the complex interplay between seed redox status, ABA, ROS
and NO in this system. 相似文献
19.
光果甘草毛状根培养过程中对活性氧清除能力和总黄酮含量的变化 总被引:1,自引:1,他引:1
采用化学发光法, 分析了光果甘草(Glycyrrhiza glabra L.)毛状根培养过程中对3种活性氧(ROS: O-2(÷)、HO·和H-2O-2)清除能力的动态变化, 并测定了培养过程中总黄酮含量的动态变化. 实验结果表明, 毛状根在对数生长期(20~28 d)对3种ROS都有很强的清除能力,在生长停滞期(29~40 d)对HO·和H-2O-2的清除能力仍维持较高的水平,而对O-2(÷)的清除能力随培养时间的延长逐渐下降.总黄酮含量在对数生长期呈现增加的趋势,至31 d时达到最高含量(0.78%),随培养时间的延长含量逐渐降低. 相似文献
20.
DIE HU GANG MA QIONG WANG JINGHAN YAO YU WANG HUGH W. PRITCHARD XIAOFENG WANG 《Plant, cell & environment》2012,35(11):2045-2059
Seed deterioration is poorly understood and remains an active area for research. Seeds of elm (Ulmus pumila L.) were aged at 37 °C above water [controlled deterioration treatment (CDT)] for various lengths of time to assess programmed cell death (PCD) and reactive oxygen species (ROS) product in embryonic tissues during a 5 d period. The hallmarks of PCD were identified in the elm seeds during CDT including TUNEL experiments, DNA laddering, cytochrome c (cyt c) leakage and enzymatic activities. These analyses indicated that PCD occurred systematically and progressively in deteriorated elm seeds. Cyt c release and increase in caspase‐3‐like/DEVDase activity occurred during CDT, which could be suppressed by ascorbic acid (AsA) and caspase‐3 inhibitor Ac‐DEVD‐CHO, respectively. In situ localization of ROS production indicated that the distinct spatial‐temporal signature of ROS during CDT coincided with the changes in PCD hallmark features. Multiple antioxidant elements were activated during the first few days of CDT, but were subsequently depleted as PCD progressed. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during elm seeds CDT and suggest an important role for PCD in seeds deterioration. 相似文献