首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The acetylthiocholine-hydrolyzing enzymatic activity inhibited by the neostigmine and partly physostigmine has been found in extracts from mycelium of fungus Aspergillus niger. The enzyme has been isolated and 15-20 fold purified. The cholinesterase activity of the protein (Kmu 7.10-7 M) is comparable with known for analogous enzymes from higher plants, for its inhibition high concentrations of substrate (greater than 10-3M) are required. The enzyme hydrolyzes acetylthiocholine with rate approximately 1.5 times higher than butyrylthiocholine. Molecular mass of native protein is approximately 600 kDa, subunits -63 and 44 kDa.  相似文献   

2.
Methyltetrazolethiol (1-methyl-5-mercapto-1,2,3,4-tetrazole, MTT) is a heterocyclic substituent of the cephalosporin antibiotics, cefamandole, cefoperazone, and moxalactam. Pretreatment of rats with MTT has been reported to increase blood acetaldehyde concentration after ethanol administration. The time course of MTT-induced inhibition of hepatic aldehyde dehydrogenases (ALDH) was determined in adult, male Sprague-Dawley rats in comparison with the hepatic ALDH inhibition induced by calcium carbimide (calcium cyanamide, CC) and disulfiram (D). The apparent onset of maximal inhibition of hepatic low Km ALDH occurred at 2 h for 50 mg/kg MTT (subcutaneous, s.c.) and 7 mg/kg CC (oral) and at 24 h for 300 mg/kg D (oral). The relative magnitude of maximal inhibition of low Km ALDH was CC greater than D greater than MTT. The relative duration of enzyme inhibition was D greater than MTT greater than CC. High Km ALDH was only inhibited by CC. Hepatic low Km ALDH was selectively inhibited by s.c. and oral administration of 125 mg/kg MTT. For s.c. administration of 125 mg/kg MTT, the magnitude of maximal enzyme inhibition and the duration of inhibition were greater than for the 50 mg/kg dose. Oral administration of 125 mg/kg MTT produced similar inhibition of hepatic low Km ALDH compared with s.c. administration of the same dose. The time course of blood ethanol and acetaldehyde concentrations was determined for the intravenous infusion of two 0.3-g/kg doses of ethanol to rats that were pretreated orally with saline (1 h), MTT (125 mg/kg, 2 h), or CC (7 mg/kg, 1 h). The relative increase in blood acetaldehyde concentration compared with saline pretreatment was CC greater than MTT. The elimination of ethanol from blood was slower in the MTT- and CC-pretreated animals, and this effect was more pronounced for CC pretreatment. Overall, the data demonstrate that the characteristics of hepatic ALDH inhibition for MTT are different from those of the known ALDH inhibitors, CC and D.  相似文献   

3.
3-(4-[(3-Chlorophenyl)methoxy]phenyl)-5-[(methylamino)methyl]-2- oxazolidinone methanesulphonate (compound MD 780236) is a selective inhibitor of the B-form of monoamine oxidase. Inhibition involves an initial non-covalent interaction between enzyme and inhibitor followed by a time-dependent process resulting in irreversible inhibition. The initial, reversible, phase of inhibition was found to be competitive with respect to phenethylamine and 5-hydroxytryptamine, and a comparison of the Ki values indicated the affinity of the inhibitor for the B-form of the enzyme to be some 7-fold greater than its affinity for the A-form. This selectivity was considerably enhanced by preincubation of the enzyme and inhibitor. Time courses showed that complete inhibition was not achieved under conditions where the inhibitor concentration was over 100-fold greater than that of the enzyme. Assay of the activity of monoamine oxidase by determining the release of hydrogen peroxide fluorometrically showed compound MD 780236 to be a substrate for, as well as an inhibitor of, monoamine oxidase, and kinetic analysis revealed that the rate of product formation was some 530-fold greater than that of the process leading to irreversible inhibition of the B-form of the enzyme.  相似文献   

4.
Abstract— The effects of cholinergic drugs on thiamine diphosphatase (TDPase) in rat brain, liver and kidney were studied to clarify the role of the enzyme in the central nervous system.
Brain TDPase activity was markedly increased by intraperitoneal injection of a sub-lethal dose of physostigmine, ambenonium or pentetrazol. These drugs also increased the activity in the kidney, but not liver. Strychnine, atropine, and scopolamine did not affect the activity of brain TDPase, but decreased the enzyme activity of liver and kidney. Physostigmine also increased the activity of brain thiamine monophosphatase.
Brain TDPase activity reacheda maximum 30 minafterphysostigmine injection (1.0mg/kg). However, inhibition of brain acetylcholinesterase activity was greatest 45 min after physostigmine injection. The TDPase and AChE activities had both returned to normal values 60 min after the injection. The durations of these changes of TDPase and AChE activity corresponded to the duration of the tremor induced by physostigmine. The contents of total and phosphorylated thiamines in the brain but not in the liver or kidney were significantly reduced by physostigmine.
The relationship between ACh and activation of TDPase activity by cholinesterase inhibitors is discussed.  相似文献   

5.
The effects of physostigmine, tetrahydroaminoacridine (THA) and LF-14 [3,3-dimethyl-1(4- amino-3-pyridyl)urea], a 3,4-diaminopyridine derivative, were compared on inhibition of acetyl- cholinesterase (AChE) activity, and release of [3H]acetylcholine (ACh) from rat brain cortical and hippocampal slices. All three compounds caused a concentration dependent inhibition of AChE, with an order of potency physostigmine > THA > LF-14. The electrically stimulated release of ACh from hippocampal and cortical slices was decreased by 10−5M physostigmine, although the effect was significant only in cortex. THA (5 × 105M) caused a slight, but not significant, decrease in ACh release from both tissues. In contrast, LF-14 (5 × 10−5 M) caused an approx. 3-fold enhancement of stimulated release. When AChE was inhibited by prior addition of physostigmine, THA caused only a slight enhancement of ACh release, whereas LF-14 greatly increased release. ACh release was also reduced by stimulation of presynaptic muscarinic receptors with oxotremorine. In this case, THA had no effect on ACh release, while LF-14 was able to reverse the inhibition. This study suggests that LF-14 acts to promote ACh release through blocking K+ channels, and has a less potent AChE inhibitory effect. It is possible that a compound like LF-14 could be useful in treating diseases of cholinergic dysfunction such as Alzheimer's disease, by both promoting the release of ACh and inhibiting its breakdown.  相似文献   

6.
An enzyme with sulfatase activity has been isolated from the granules of a rat NK leukemia cell line, CRNK-16. The enzyme has been purified from crude preparation, with a specific activity of 52 nmol/min/mg of protein, by DEAE ion exchange and Con A-Sepharose affinity chromatography, resulting in a specific activity of 230 nmol/min/mg of protein. The molecular mass of the purified enzyme was estimated to be 40 kDa by gel filtration chromatography at pH 7.4, but the enzyme had the ability to complex to molecular masses of greater than 300 kDa at low pH when crude granule extract was used as the starting sample, suggesting that it associates with other granule components. The enzyme was determined to be an arylsulfatase by its ability to (a) hydrolyze p-nitrophenyl sulfate (Km = 26.0 mM) and p-nitrocatechol sulfate (pNC sulfate) (Km = 1.1 mM) and (b) be inhibited by sulfite (Ki = 6.0 x 10(-7) M), sulfate (Ki = 1 x 10(-3) M), and phosphate (Ki = 4 x 10(-5) M) in a competitive manner. The pH optimum for enzymatic activity was determined to be 5.6. The role of this enzyme in cytolytic function was investigated by examining the effect of its substrates and inhibitors on granule- and cell-mediated lysis. pNC sulfate was shown to cause a dose-dependent inhibition of target cell lysis by isolated cytolytic granules (complete inhibition at 12.5 mM). Sulfite induced an incomplete inhibition (50% at 1 mM), whereas phosphate was essentially without inhibitory effect. Sulfate, on the other hand, altered lytic activity in a biphasic manner, inasmuch as it induced an inhibition of lysis at high concentrations and an increase of lysis at low concentrations. Cell-mediated lysis was inhibited by pNC sulfate in a dose-dependent fashion at concentrations greater than 2.5 mM, with nearly complete inhibition at 50 mM. Sulfate also altered the lytic activity by intact cells in a biphasic manner, although the effect was much less pronounced. Sulfite and phosphate caused only a 30% inhibition of lytic activity. These results suggest that the sulfatase enzyme is involved in NK cytolytic function, presumably at the lethal hit stage.  相似文献   

7.
A new Zn2+-stimulated sphingomyelinase in fetal bovine serum   总被引:1,自引:0,他引:1  
Fetal bovine serum contains a Zn2+-dependent sphingomyelinase with optimal activity at pH 5.5 in vitro. Activity could be demonstrated with a liposomal sphingomyelin substrate suspension but was stimulated up to 15-fold by Triton X-100. Under a variety of conditions tested, phosphatidylcholine, lysophosphatidylcholine, glycerophosphocholine, and p-nitrophenyl phosphate were not substrates for this activity. Several inhibitors of serum alkaline and acid phosphatases had no effect on the activity. The enzyme resembles the acid lysosomal sphingomyelinase in pH optimum and inhibition by AMP but differs in inhibition by EDTA, stimulation by Zn2+, and heat lability at 55 degrees C. It resembles the neutral, Mg2+-stimulated enzyme in inhibition by EDTA and heat lability but differs in metal ion requirement and pH optima. Of the sera tested, activity was highest in fetal bovine serum, with fetal bovine greater than newborn bovine greater than horse greater than human; more than 95% of the activity is in the lipoprotein-free infranatant of serum (d greater than 1.21). This activity appears to be a hitherto undescribed sphingomyelinase. Its biological functions are not known but may subserve a special role in sphingomyelin catabolism in the circulation, in blood vessel walls, or in the tissue(s) of origin.  相似文献   

8.
A series of aza inhibitors (4-9) of chorismate mutase (E.C. 5.4.99.5) was designed, prepared, and evaluated against the enzyme by monitoring the direct inhibition of the chorismate, 1, to prephenate, 2, conversion. None of these aza inhibitors displayed tighter binding to the enzyme than the native substrate chorismate or greater inhibitory action than the previously reported ether analogue, 3. Furthermore, no time-dependent loss of enzyme activity was observed in the presence of the two potentially reactive aza inhibitors (7 and 9). These results in conjunction with inhibition data from a broader series of chorismate mutase inhibitors allowed a novel proposal for the mechanistic role of chorismate mutase to be developed. This proposed mechanism was computationally verified and correlated with crystallographic studies of various chorismate mutases.  相似文献   

9.
Inhibition of phospholipase A2 by heparin   总被引:1,自引:0,他引:1  
Phospholipase A2 (PLA2) is an important enzyme in the regulation of cell behavior. The hydrolysis of phosphatidylcholine in vitro catalyzed by porcine pancreatic PLA2 was inhibited by heparin. Other glycosaminoglycans inhibited PLA2 activity to a significantly lesser extent, with a pattern of inhibition: heparin much greater than chondroitin sulfate (CS)-C greater than CS-A greater than CS-B greater than keratan sulfate. Hyaluronic acid and heparan sulfate caused no inhibition. Heparin's ability to inhibit PLA2 activity did not depend on substrate concentration, but did depend on ionic strength, with inhibition decreasing with increasing ionic strength. Heparin inhibition also varied with pH, being more effective at pH 5-8 than at pH 10. As a consequence, heparin induced a shift of the pH optimum of PLA2 from 7 to 8. Histone IIA and protamine sulfate, heparin-binding proteins, reversed heparin-induced PLA2 inhibition. The concentration of heparin which inhibited PLA2 activity by 50% increased with increasing enzyme concentration. Furthermore, PLA2 bound to heparin-Affigel. The data indicate that the catalytic potential of PLA2 can be regulated by heparin or heparin-like molecules and that inhibition is contingent on the formation of a heparin-PLA2 complex.  相似文献   

10.
Physostigmine-induced pressor response was studied in adrenalectomized rats. The increase in mean arterial blood pressure elicited by intravenous administration of physostigmine was not altered by adrenalectomy or sham-operation. The pressor response to intracerebroventricular administration of physostigmine was found to be partially inhibited in both acutely adrenalectomized and sham-operated rats, but not in those adrenalectomized 24 h earlier. This inhibition was completely prevented by naloxone pretreatment. The results suggest that endogenous opioid peptide release induced by surgical stress may be responsible for inhibition of the pressor effect of centrally administered physostigmine in rats.  相似文献   

11.
Activation of cholinergic neurons in the brain is produced by administration of the acetylcholinesterase inhibitors physostigmine and diisopropylfluorophosphate (DFP). This activation has a biphasic effect on tyrosine hydroxylase (EC 4.14.3-) activity. The acute effect of DFP, 1 mg/kg, intraperitoneally, or physostigmine, 0.2 mg/kg, intravenously, or 10 mug, intraventricularly, was a rapid reduction in tyrosine hydroxylase activity in the hypothalamus. The activities of DOPA decarboxylase (EC 4.1.1.28) and dopamine-beta-hydroxylase (EC 1.14.17.1) were not changed. In contrast to the acute effect, chronic administration of physostigmine, 0.2 mg/kg, intravenously, twice daily for 7 days produced an increase in tyrosine hydroxylase activity in the hypothalamus. The rapid acute effects may be due to an allosteric inactivation of tyrosine hydroxylase, while the chronic effects may reflect enzyme induction.  相似文献   

12.
1. Guanylate cyclase of washed particles and plasma membranes showed S-shaped progress curves when titrated with either GTP or Mn2+ ions; similar results were obtained with Triton X-100-solubilized enzyme preparation from washed particles. Hill plots of these data revealed multiple metal-nucleotide and free-metal binding sites. 2. Guanylate cyclase of supernatant fractions displayed typical Michaelis-Menten properties when enzyme required excess of (free) Mn2+ (over GTP) for maximal activities; Ka (free Mn2+) was about 0.15-0.25 mM at subsaturating concentrations of GTP. 4 MnATP, MnADP, and MnGDP were found to increase the activities of both particulate and superantant enzyme, when MnGTP concentration was below saturation and free Mn2+ ion concentration was low (less than 100 muM); MnATP (50muM-1 mM) inhibited both these activities at high free Mn2+ concentration (1.5 mM) and inhibition of the particulate enzyme was greater than that of supernatant enzyme. 5. Ca2+ ions stimulated supernatant-enzyme activity; the stimulatory concentration of Ca2+ ions depended on the concentration of Mn2+ and GTP. 6. A modest stimulation of particulate guanylate cyclase by pyrophosphate (0.02-1 mM) was observed; the pyrophosphate effect appeared to be competitive with respect to GTP. At a higher concentration (2 mM), pyrophosphate produced a marked inhibition of particulate enzyme; the nature of inhibitory effect appeared complex. 7. Inorganic salts (e.g. NaCl, KCl, LiBr, NaF) produced inhibition of particulate enzyme; the degree of inhibition of Triton X-100-stimulated activity was less than that of unstimulated activity. 9. Treatment of sarcolemmal or microsomal membranes with either phospholipase C or trypsin decreased, whereas phospholipase A increased, the activity of guanylate cyclase.  相似文献   

13.
7 alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by whole cells of strain c-25, a Eubacterium lentum-like intestinal anaerobe, was studied. 7 alpha-Dehydroxylase activity was observed only in whole cells grown in the presence of the primary bile acid (cholic acid or chenodeoxycholic acid). Chenodeoxycholic acid was twice as effective as cholic acid as an inducer. Although cells grown in the presence of chenodeoxycholic acid had no significant substrate specificity for the two primary bile acids, cells grown in the presence of cholic acid showed two times greater activity against cholic acid than chenodeoxycholic acid. Exposure of cell suspensions to atmospheric oxygen resulted in little loss of the 7 alpha-dehydroxylase activity. The induced enzyme had an optimal pH range of 7.3 to 7.7. Although adding flavin mononucleotide to the growth medium significantly increased the 7 alpha-dehydroxylation of bile acids without an increase in cell growth, inhibition of the enzyme activity was observed in the resting cell system when flavin mononucleotide was included in the reaction mixture.  相似文献   

14.
7,12-Dimethylbenz(a)anthracene (DMBA) and 7-methoxymethyl-12-methylbenz(a)anthracene (MeO-DMBA) are converted to a number of products during short exposures in aqueous suspension to laboratory illumination. The mixture of products binds to glyceraldehyde-3-phosphate dehydrogenase (GPDH) while inhibiting its activity but there is no apparent relationship between the binding and inhibition of enzyme activity. There is little, or no, binding or enzyme inhibition when the compounds are protected from light. 7-Bromomethyl-12-methylbenz(a)anthracene (Br-DMBA) binds to GPDH whether photoactivated or not but enzyme inhibition depends upon light exposure. The binding of light-exposed DMBA by surviving rat mammary tissue was five-times greater than with the unchanged hydrocarbon. Binding of MeO-DMBA products also occurred after light exposure but not in the dark.  相似文献   

15.
7 alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by whole cells of strain c-25, a Eubacterium lentum-like intestinal anaerobe, was studied. 7 alpha-Dehydroxylase activity was observed only in whole cells grown in the presence of the primary bile acid (cholic acid or chenodeoxycholic acid). Chenodeoxycholic acid was twice as effective as cholic acid as an inducer. Although cells grown in the presence of chenodeoxycholic acid had no significant substrate specificity for the two primary bile acids, cells grown in the presence of cholic acid showed two times greater activity against cholic acid than chenodeoxycholic acid. Exposure of cell suspensions to atmospheric oxygen resulted in little loss of the 7 alpha-dehydroxylase activity. The induced enzyme had an optimal pH range of 7.3 to 7.7. Although adding flavin mononucleotide to the growth medium significantly increased the 7 alpha-dehydroxylation of bile acids without an increase in cell growth, inhibition of the enzyme activity was observed in the resting cell system when flavin mononucleotide was included in the reaction mixture.  相似文献   

16.
Metrifonate, a long-acting cholinesterase (ChE) inhibitor with very low toxicity in warm-blooded animals, inhibits rat brain and serum cholinesterase (ChE) in vitro through its hydrolytic degradation product, dichlorvos. This conclusion is based on the finding that metrifonate-induced ChE inhibition showed the same pH dependence as its reported dehydrochlorination to dichlorvos. The ChE inhibition induced by dichlorvos was not pH dependent. It was mediated by a competitive drug interaction with the catalytic site of the enzyme, which led to irreversible inhibition within several minutes of incubation. After this time, addition of further substrate to the inhibited enzyme was not able to promote drug dissociation and hence enzyme reactivation. Similar characteristics of inhibition, i.e. interaction with the substrate binding site and time-dependent switch to non-competitive inhibition were observed with the reference compound, physostigmine. However, the physostigmine-induced inhibition of ChE could be readily reversed by further substrate addition. Another reference compound, tetrahydroaminoacridine (THA), also induced a reversible inhibition of rat brain and serum cholinesterase, but with a mechanism of action different from that of both dichlorvos and physostigmine in that enzyme inhibition occurred rapidly upon drug addition at an allosteric site on the enzyme surface. It is suggested that the unique slow release plus the slow inhibition of ChE by dichlorvos is responsible for the lower toxicity of metrifonate compared to that of directly acting ChE inhibitors.  相似文献   

17.
Eleven hybridoma clones which secrete monoclonal antibodies against purified rat liver alcohol dehydrogenase (EC 1.1.1.1) were isolated. Antibodies (R-1-R-11) were identified by their ability to bind to immobilized pure alcohol dehydrogenase in an enzyme-linked immunoadsorbent assay, in which antibody R-9 showed the highest binding capacity. Except for R-1 and R-7, all antibodies inhibited catalytic activity of the enzyme isolated from inbred (Fischer-344) or outbred (Sprague-Dawley) strains (R-11 greater than R-9 greater than R-4 greater than R-6 greater than R-10 greater than R-8 greater than R-2 = R-3 = R-5). The inhibition of enzyme activity by antibodies was noncompetitive for ethanol and NAD+, and was dependent on antibody concentration and incubation time. Antibodies R-4, R-9, and R-11 were most effective when enzyme activity was assayed below pH 7.7-7.8, a condition thought to protonate the enzyme's active center. These three antibodies did not inhibit horse liver alcohol dehydrogenase activity, indicating their species specificity. Such antibodies will be useful to delineate structural and functional roles of rat liver alcohol dehydrogenase.  相似文献   

18.
The pH optimum of the ATPase activity in plasma membranes from Saccharomyces cerevisiae NCYC 431 from 8 h cultures was around 6.5 and that in membranes from organisms from 16 h cultures near 6.0. The Km[ATP] of the enzyme was virtually unaffected by the age of the culture from which organisms were harvested, although the Vmax of the enzyme in membranes from organisms from 8 h cultures was higher than that for organisms from 16 h cultures. Ethanol non-competitively inhibited ATPase activity in membranes, although the inhibition constant for the enzyme from organisms from 8 h cultures was lower than that from organisms from 16 h cultures. Glycine accumulation by the general amino acid permease was non-competitively inhibited by ethanol. Inhibition constants were virtually the same for glycine uptake by deenergized organisms from 8 h and 16 h cultures, but under energized conditions the value was greater for organisms from 16 h rather than 8 h cultures. The data indicate that inhibition of plasma-membrane ATPase activity by ethanol could account, at least in part, for inhibition of glycine accumulation by ethanol.  相似文献   

19.
H C Shin  D M Quinn 《Biochemistry》1992,31(3):811-818
The interaction of lipoprotein lipase with p-nitrophenyl N-alkylcarbamates [PNPOC(=O)-NHCnH2n+1; n = 4, 8, and 12] proceeds by the three-stage mechanism shown below. After reversible [formula: see text] formation of the enzyme-carbamate complex (EC), rapid carbamylation (kc) precedes slow decarbamylation. Therefore, in short-term assays (less than or equal to 30 min) of lipoprotein lipase catalyzed hydrolysis of p-nitrophenyl butyrate, activity is rapidly lost. The inhibition by p-nitrophenyl N-butylcarbamate follows saturation kinetics, which allows determination of Kc = 5.4 +/- 0.9 microM and kc = (4.9 +/- 0.7) x 10(-2)s-1. Saturation kinetics are not observed for the longer inhibitors p-nitrophenyl N-octylcarbamate and p-nitrophenyl N-dodecylcarbamate. Rather, plots of the pseudo-first-order rate constant for activity loss versus inhibitor concentration are concave upward, consistent with inhibitor binding to two sites on the enzyme. The inhibition phase is sufficiently rapid that p-nitrophenyl N-octylcarbamate can be used to titrate enzyme active sites. On the other hand, long-term assays (greater than 5 h) show sequential inhibition and activity return phases, and from the activity return phase kd is calculated. The long-term activity time course is accurately simulated by Runge-Kutta integration of the differential equations for the three-stage mechanism. These approaches have been used to characterize the kinetics of interaction of the enzyme with the carbamate inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The new synthetic nucleoside analogue, 2-beta-D-ribofuranosylselenazole-4-carboxamide, was evaluated for its effects upon the growth and maturation of the human promyelocytic leukemia cell line, HL-60. At a concentration of greater than or equal to 1 nm, this agent was found both to decrease HL-60 cell proliferation and to cause the cells to acquire an ability to phagocytose opsonized yeast and to reduce nitroblue tetrazolium dye, functions characteristic of mature myeloid cells. In addition, this agent at similar concentrations caused a marked depression of intracellular guanosine nucleotide pools and a reduction in the incorporation of [14C] hypoxanthine into guanylates. These results suggested that the selenazole nucleoside caused an inhibition of inosinate monophosphate dehydrogenase, a key enzyme of guanylate biosynthesis. We therefore measured the activity of this enzyme indirectly by simultaneous-UV-radioactivity HPLC as well as by a direct radiometric method and demonstrated markedly reduced enzyme activities by both assays in drug treated cells. Dose response studies indicated that concentrations of drug which caused greater than 30% inhibition of IMP dehydrogenase activity induced greater than 50% maturation of the cells. These observations with this new nucleoside analogue provide further support for the concept that production of guanosine nucleotides and the activity of IMP dehydrogenase have a role in regulating the terminal maturation of myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号