首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetanus and botulinum toxins bind and are internalized at the neuromuscular junction. Botulinum neurotoxins (BoNTs) enter the cytosol at the motor nerve terminal; tetanus neurotoxin (TeNT) proceeds retroaxonally inside the motor axon to reach the spinal cord inhibitory interneurons. Although the major target of BoNTs is the peripheral cholinergic terminals, CNS neurons are susceptible to intoxication as well. We investigated the route of entry and the proteolytic activity of BoNT/B and BoNT/F in cultured hippocampal neurons and astrocytes. We show that, differently from TeNT, which enters hippocampal neurons via the process of synaptic vesicle (SV) recycling, BoNTs are internalized and cleave the substrate synaptobrevin/VAMP2 via a process independent of synaptic activity. Labeling of living neurons with Texas Red-conjugated BoNTs and fluoresceinated dextran revealed that these toxins enter hippocampal neurons via endocytic processes not mediated by SV recycling. Botulinum toxins also exploit endocytosis to enter cultured astrocytes, where they partially cleave cellubrevin, a ubiquitous synaptobrevin/VAMP isoform. These results indicate that, in spite of their closely related protein structure, TeNT and BoNTs use different routes to penetrate hippocampal neurons. These findings bear important implications for the identification of the protein receptors of clostridial toxins.  相似文献   

2.
Botulinum neurotoxins (BoNTs) target presynaptic nerve terminals by recognizing specific neuronal surface receptors. Two homologous synaptic vesicle membrane proteins, synaptotagmins (Syts) I and II, bind toxins BoNT/B and G. However, a direct demonstration that Syts I/II mediate toxin binding and entry into neurons is lacking. We report that BoNT/B and G fail to bind and enter hippocampal neurons cultured from Syt I knockout mice. Wild-type Syts I and II (but not Syt I loss-of-function toxin-binding domain mutants) restored binding and entry of BoNT/B and G in Syt I–null neurons, thus demonstrating that Syts I/II are protein receptors for BoNT/B and G. Furthermore, mice lacking complex gangliosides exhibit reduced sensitivity to BoNT/G, and binding and entry of BoNT/A, B, and G into hippocampal neurons lacking gangliosides is diminished. These data suggest that gangliosides are the shared coreceptor for BoNT/A, B, and G, supporting a double-receptor model for these three BoNTs for which the protein receptors are known.  相似文献   

3.
Botulinum neurotoxins (BoNTs) cause botulism by entering neurons and cleaving proteins that mediate neurotransmitter release; disruption of exocytosis results in paralysis and death. The receptors for BoNTs are thought to be composed of both proteins and gangliosides; however, protein components that mediate toxin entry have not been identified. Using gain-of-function and loss-of-function approaches, we report here that the secretory vesicle proteins, synaptotagmins (syts) I and II, mediate the entry of BoNT/B (but not BoNT/A or E) into PC12 cells. Further, we demonstrate that BoNT/B entry into PC12 cells and rat diaphragm motor nerve terminals was activity dependent and can be blocked using fragments of syt II that contain the BoNT/B-binding domain. Finally, we show that syt II fragments, in conjunction with gangliosides, neutralized BoNT/B in intact mice. These findings establish that syts I and II can function as protein receptors for BoNT/B.  相似文献   

4.
The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes from nerve terminals to the soma, and represents a general gateway for the delivery of virulence factors and pathogens to the central nervous system.  相似文献   

5.
Peng L  Tepp WH  Johnson EA  Dong M 《PLoS pathogens》2011,7(3):e1002008
Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C). Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin.  相似文献   

6.
Botulinum neurotoxins (BoNT/A-G), the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25). However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48) or sensitive (M48) to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis (botulism), which in most cases enter the organism via the digestive tract and then disseminate into the blood or lymph circulation to target autonomic and motor nerve endings. The passage way of BoNTs alone or in complex forms with associated nontoxic proteins through the epithelial barrier of the digestive tract still remains unclear. Here, we show using an in vivo model of mouse ligated intestinal loop that BoNT/B alone or the BoNT/B C‐terminal domain of the heavy chain (HCcB), which interacts with cell surface receptors, translocates across the intestinal barrier. The BoNT/B or HCcB translocation through the intestinal barrier occurred via an endocytosis‐dependent mechanism within 10–20 min, because Dynasore, a potent endocytosis inhibitor, significantly prevented BoNT/B as well as HCcB translocation. We also show that HCcB or BoNT/B specifically targets neuronal cells and neuronal extensions in the intestinal submucosa and musculosa expressing synaptotagmin, preferentially cholinergic neurons and to a lower extent other neuronal cell types, notably serotonergic neurons. Interestingly, rare intestinal epithelial cells accumulated HCcB suggesting that distinct cell types of the intestinal epithelium, still undefined, might mediate efficient translocation of BoNT/B.  相似文献   

8.
谭玲  王建新  王慧 《微生物学报》2022,62(4):1270-1285
肉毒神经毒素(botulinum neurotoxins,BoNTs)是由梭状芽孢杆菌属分泌的外毒素,是目前已知毒性最强的生物类毒素.BoNTs共分为7种血清型(A-G),其中A型导致的肉毒中毒最为常见.由于肉毒毒素的强毒性及易于制备,其已被列为A类生物恐怖制剂.目前,针对肉毒中毒的有效治疗手段为早期注射抗毒素血清.但...  相似文献   

9.
Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release at peripheral nerve terminals. They are serologically classified from A to G, C/D and D/C mosaic neurotoxins forming further subtypes of serotypes C and D. Cultured primary neurons, as well as neuronal cell lines such as PC12 and Neuro-2a, are often utilized in cell-based experiments on the toxic action of botulinum toxins. However, there are very few reports of the use of neural cell lines for studying BoNTs/C and D. In addition, the differentiated P19 neuronal cell line, which possesses cholinergic properties, has yet to be tested for its susceptibility to BoNTs. Here, the responsiveness of differentiated P19 cells to BoNT/C and BoNT/DC is reported. Both BoNT/C and BoNT/DC were shown to effectively bind to, and be internalized by, neurons derived from P19 cells. Subsequently, the intracellular substrates for BoNT/C and BoNT/DC were cleaved by treatment of the cells with the toxins in a ganglioside-dependent manner. Moreover, P19 neurons exhibited high sensitivity to BoNT/C and BoNT/DC, to the same extent as cultured primary neurons. These findings suggest that differentiated P19 cells possess full sensitivity to BoNT/C and BoNT/DC, thus making them a novel susceptible cell line for research into BoNTs.  相似文献   

10.
Botulinum neurotoxins (BoNTs, serotypes A-G), elaborated by Clostridium botulinum, can induce lethal paralysis and are classified as Category A bioterrorism agents. However, how BoNTs translocate from endosomes into the cytosol of neurons to gain access to their intracellular targets remains enigmatic. We discovered that binding to the ganglioside GT1b, a toxin coreceptor, enables BoNT/B to sense low pH, undergo a significant change in secondary structure, and transform into a hydrophobic oligomeric membrane protein. Imaging of the toxin on lipid bilayers using atomic force microscopy revealed donut-shaped channel-like structures that resemble other protein translocation assemblies. Toosendanin, a drug with therapeutic effects against botulism, inhibited GT1b-dependent BoNT/B oligomerization and in parallel truncated BoNT/B single-channel conductance, suggesting that oligomerization plays a role in the translocation reaction. Thus, BoNT/B functions as a coincidence detector for receptor and low pH to ensure spatial and temporal accuracy for toxin conversion into a translocation channel.  相似文献   

11.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting neurotransmitter-carrying vesicle fusion to the plasma membrane of peripheral neurons. Unlike other zinc proteases, BoNTs recognize extended regions of SNAP25 for cleavage; however, the molecular basis for this extended substrate recognition is unclear. Here, we define a multistep mechanism for recognition and cleavage of SNAP25 by BoNT/A. SNAP25 initially binds along the belt region of BoNT/A, which aligns the P5 residue to the S5 pocket at the periphery of the active site. Although the exact order of each step of recognition of SNAP25 by BoNT/A at the active site is not clear, the initial binding could subsequently orient the P4'-residue of SNAP25 to form a salt bridge with the S4'-residue, which opens the active site allowing the P1'-residue access to the S1'-pocket. Subsequent hydrophobic interactions between the P3 residue of SNAP25 and the S3 pocket optimize alignment of the scissile bond for cleavage. This explains how the BoNTs recognize and cleave specific coiled SNARE substrates and provides insight into the development of inhibitors to prevent botulism.  相似文献   

12.
Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses   总被引:11,自引:0,他引:11  
The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals.  相似文献   

13.
The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex.  相似文献   

14.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E … H … SXWY … G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.  相似文献   

15.
Sun S  Tepp WH  Johnson EA  Chapman ER 《Biochemistry》2012,51(28):5655-5662
Botulinum neurotoxins (BoNTs, serotypes A-G) are the most deadly substances known. Here, we investigated how BoNT/E, a serotype that causes human botulism, translocates into the cytosol of neurons. Analogous to BoNT/B, BoNT/E required binding of the coreceptor, GT1b, to undergo significant secondary structural changes and transform into a hydrophobic protein at low pH. These data indicate that both serotypes act as coincidence detectors for both GT1b and low pH, to undergo translocation. However, BoNT/E translocated much more rapidly than BoNT/B. Also, BoNT/E required only GT1b, and not low pH, to oligomerize, whereas BoNT/B required both. In further contrast to the case of BoNT/B, low pH alone altered the secondary structure of BoNT/E to some degree and resulted in its premature inactivation. Hence, comparison of two BoNT serotypes revealed that these agents exhibit both convergent and divergent responses to receptor interactions, and pH, in the translocation pathway.  相似文献   

16.
Botulinum neurotoxins (BoNTs) internalize into nerve terminals and block the release of neurotransmitters into the synapse. BoNTs are widely used as a therapeutic agent for treatment of movement disorders and recently gained more attention as a biological weapon. Consequently, there is strong interest to develop a cell-based assay platform to screen the toxicity and bioactivity of the BoNTs. In this study, we present an in vitro screening assay for BoNT/A based on differentiated human embryonal carcinoma stem (NT2) cells. The human NT2 cells fully differentiated into mature neurons that display immunoreactivity to cytoskeletal markers (βIII-tubulin and MAP2) and presynaptic proteins (synapsin and synaptotagmin I). We showed that the human NT2 cells undergo a process of exo-endocytotic synaptic vesicle recycling upon depolarization with high K(+) buffer. By employing an antibody directed against light chain of BoNT/A, we detected internalized toxin as a punctate staining along the neurites of the NT2 neurons. Using well-established methods of synaptic vesicle exocytosis assay (luminal synaptotagmin I and FM1-43 imaging) we show that pre-incubation with BoNT/A resulted in a blockade of vesicle release from human NT2 neurons in a dose-dependent manner. Moreover, this blocking effect of BoNT/A was abolished by pre-adsorbing the toxin with neutralizing antibody. In a proof of principle, we demonstrate that our cell culture assay for vesicle release is sensitive to BoNT/A and the activity of BoNT/A can be blocked by specific neutralizing antibodies. Overall our data suggest that human NT2 neurons are suitable for large scale screening of botulinum bioactivity.  相似文献   

17.
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis‐dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C‐terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a/GD1b/GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108‐15 neuronal cells, HcB only uses the gangliosides GD1a/GD1b/GT1b to efficiently bind to m‐ICcl2 intestinal cells. HcB enters both cell types by a dynamin‐dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42‐dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m‐ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.  相似文献   

18.
Botulinum neurotoxins (BoNTs) are often acquired from the digestive tract and specifically target neuromuscular junctions where they cause an inhibition of acetylcholine release. A transcytotic mechanism has been evidenced in epithelial intestinal cells, which delivers whole BoNTs across the intestinal barrier, whereas BoNTs enter motoneurons through a pathway that permits the translocation of light chain into the cytosol. We used fluorescent BoNT/A C-terminal part of H chain (Hc) that mediates toxin binding to cell receptors to monitor toxin entry into NG108-15 neuronal cells as well as into Caco-2 and m-ICcl2 intestinal cells. BoNT/A Hc receptors were found to be distributed in membrane structures closely associated to cholesterol-enriched microdomains, but distinct from detergent-resistant microdomains in both cell types. BoNT/A Hc was trapped into endocytic vesicles, which progressively migrated to a perinuclear area in NG108-15 cells, and in a more scattered manner in intestinal cells. In both cell types, BoNT/A Hc entered through a dynamin- and intersectin-dependent pathway, reached an early endosomal compartment labelled with early endosome antigen 1. In neuronal cells, BoNT/A Hc entered mainly via a clathrin-dependent pathway, in contrast to intestinal cells where it followed a Cdc42-dependent pathway, supporting a differential toxin routing in both cell types.  相似文献   

19.
Botulinum neurotoxins (BoNTs) cause botulism by cleaving proteins necessary for nerve transmission. There are seven serotypes of BoNT, A-G, characterized by their response to antisera. Many serotypes are further distinguished into differing subtypes based on amino acid sequence, some of which result in functional differences. Our laboratory previously reported that all tested subtypes within each serotype have the same site of enzymatic activity. Recently, three new subtypes of BoNT/F; /F3, /F4, and /F5, were reported. Here, we report that BoNT/F5 cleaves substrate synaptobrevin-2 in a different location than the other BoNT/F subtypes, between (54)L and (55)E. This is the first report of cleavage of synaptobrevin-2 in this location.  相似文献   

20.
Botulinum neurotoxins (BoNTs) are among the most toxic substances known. Surveillance and diagnostics require methods for rapid detection of BoNTs in complex media such as foodstuffs and human serum. We have developed in vitro assays to specifically detect the protease activity of botulinum neurotoxin B (BoNT/B) on a time scale of minutes. Cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein associated with synaptic vesicles, was monitored using real-time surface plasmon resonance to measure vesicle capture by specific antibodies coupled to microchips. The assay is functional in low-ionic-strength buffers and stable over a wide range of pH values (5.5–9.0). Endoproteolytic cleavage of VAMP2 was detected in 10 min with 2 pM native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, apple juice, and milk with low picomolar amounts of BoNT/B was revealed within 3 h. BoNT/B activity was detected in sera from patients with type B botulism but not in healthy controls or patients with other neurological diseases. This robust, sensitive, and rapid protein chip assay is appropriate for monitoring BoNT/B in food products and diagnostic tests for type B botulism and could replace the current in vivo mouse bioassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号