共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of AMPA-type glutamate ion channels are useful as biochemical probes for structure-function studies and as drug candidates for a number of neurological disorders and diseases. Here, we describe the identification of an RNA inhibitor or aptamer by an in vitro evolution approach and a characterization of its mechanism of inhibition on the sites of interaction by equilibrium binding and on the receptor channel opening rate by a laser-pulse photolysis technique. Our results show that the aptamer is a noncompetitive inhibitor that selectively inhibits the GluA2Q(flip) AMPA receptor subunit without any effect on other AMPA receptor subunits or kainate or NMDA receptors. On the GluA2 subunit, this aptamer preferentially inhibits the flip variant. Furthermore, the aptamer preferentially inhibits the closed-channel state of GluA2Q(flip) with a K(I) = 1.5 μM or by ~15-fold over the open-channel state. The potency and selectivity of this aptamer rival those of small molecule inhibitors. Together, these properties make this aptamer a promising candidate for the development of water-soluble, highly potent, and GluA2 subunit-selective drugs. 相似文献
2.
Aberrant dopamine D(4) receptor function has been implicated in mental illnesses, including schizophrenia and attention deficit-hyperactivity disorder. Recently we have found that D(4) receptor exerts an activity-dependent bi-directional regulation of AMPA receptor (AMPAR)-mediated synaptic currents in pyramidal neurons of prefrontal cortex (PFC) via the dual control of calcium/calmodulin kinase II (CaMKII) activity. In this study, we examined the signaling mechanisms downstream of CaMKII that govern the complex effects of D(4) on glutamatergic transmission. We found that in PFC neurons at high activity state, D(4) suppresses AMPAR responses by disrupting the kinesin motor-based transport of GluR2 along microtubules, which was accompanied by the D(4) reduction of microtubule stability via a mechanism dependent on CaMKII inhibition. On the other hand, in PFC neurons at the low activity state, D(4) potentiates AMPAR responses by facilitating synaptic targeting of GluR1 through the scaffold protein SAP97 via a mechanism dependent on CaMKII stimulation. Taken together, these results have identified distinct signaling mechanisms underlying the homeostatic regulation of glutamatergic transmission by D(4) receptors, which may be important for cognitive and emotional processes in which dopamine is involved. 相似文献
3.
Emerging evidence suggests that metabotropic glutamate receptors (mGluRs) are potential novel targets for brain disorders associated with the dysfunction of prefrontal cortex (PFC), a region critical for cognitive and emotional processes. Because N-methyl-D-aspartic acid receptor (NMDAR) dysregulation has been strongly associated with the pathophysiology of mental illnesses, we examined the possibility that mGluRs might be involved in modulating PFC functions by targeting postsynaptic NMDARs. We found that application of prototypical group III mGluR agonists significantly reduced NMDAR-mediated synaptic and ionic currents in PFC pyramidal neurons, which was mediated by mGluR7 localized at postsynaptic neurons and involved the β-arrestin/ERK signaling pathway. The mGluR7 modulation of NMDAR currents was prevented by agents perturbing actin dynamics and by the inhibitor of cofilin, a major actin-depolymerizing factor. Consistently, biochemical and immunocytochemical results demonstrated that mGluR7 activation increased cofilin activity and F-actin depolymerization via an ERK-dependent mechanism. Furthermore, mGluR7 reduced the association of NMDARs with the scaffolding protein PSD-95 and the surface level of NMDARs in an actin-dependent manner. These data suggest that mGluR7, by affecting the cofilin/actin signaling, regulates NMDAR trafficking and function. Because ablation of mGluR7 leads to a variety of behavioral symptoms related to PFC dysfunction, such as impaired working memory and reduced anxiety and depression, our results provide a potential mechanism for understanding the role of mGluR7 in mental health and disorders. 相似文献
4.
She K Ferreira JS Carvalho AL Craig AM 《The Journal of biological chemistry》2012,287(33):27432-27445
Trafficking of NMDA receptors to the surface of neurons and to synapses is critical for proper brain function and activity-dependent plasticity. Recent evidence suggests that surface trafficking of other ionotropic glutamate receptors requires ligand binding for exit from the endoplasmic reticulum. Here, we show that glutamate binding to GluN2 is required for trafficking of NMDA receptors to the cell surface. We expressed a panel of GluN2B ligand binding mutants in heterologous cells with GluN1 or in rat cultured neurons and found that surface expression correlates with glutamate efficacy. Such a correlation was found even in the presence of dominant negative dynamin to inhibit endocytosis and surface expression correlated with Golgi localization, indicating differences in forward trafficking. Co-expression of wild type GluN2B did not enhance surface expression of the mutants, suggesting that glutamate must bind to both GluN2 subunits in a tetramer and that surface expression is limited by the least avid of the two glutamate binding sites. Surface trafficking of a constitutively closed cleft GluN2B was indistinguishable from that of wild type, suggesting that glutamate concentrations are typically not limiting for forward trafficking. YFP-GluN2B expressed in hippocampal neurons from GluN2B(-/-) mice rescued synaptic accumulation at similar levels to wild type. Under these conditions, surface synaptic accumulation of YFP-GluN2B mutants also correlated with apparent glutamate affinity. Altogether, these results indicate that glutamate controls forward trafficking of NMDA receptors to the cell surface and to synapses and raise the intriguing idea that NMDA receptors may be functional at intracellular sites. 相似文献
5.
The mechanism by which agonist binding to an ionotropic glutamate receptor leads to channel opening is a central issue in molecular neurobiology. Partial agonists are useful tools for studying the activation mechanism because they produce full channel activation with lower probability than full agonists. Structural transitions that determine the efficacy of partial agonists can provide information on the trigger that begins the channel-opening process. The ligand-binding domain of AMPA receptors is a bilobed structure, and the closure of the lobes is associated with channel activation. One possibility is that partial agonists sterically block full lobe closure but that partial degrees of closure trigger the channel with a lower probability. Alternatively, full lobe closure may be required for activation, and the stability of the fully closed state could determine efficacy with the fully closed state having a lower stability when bound to partial relative to full agonists. Disulfide-trapping experiments demonstrated that even extremely low efficacy ligands such as 6-cyano-7-nitroquinoxaline-2,3-dione can produce a full lobe closure, presumably with low probability. The results are consistent the hypothesis that the efficacy is determined at least in part by the stability of the state in which the lobes are fully closed. 相似文献
6.
Yan JZ Xu Z Ren SQ Hu B Yao W Wang SH Liu SY Lu W 《The Journal of biological chemistry》2011,286(28):25187-25200
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs. 相似文献
7.
Vastagh C Gardoni F Bagetta V Stanic J Zianni E Giampà C Picconi B Calabresi P Di Luca M 《The Journal of biological chemistry》2012,287(22):18103-18114
Dendritic spines of medium spiny neurons represent an essential site of information processing between NMDA and dopamine receptors in striatum. Even if activation of NMDA receptors in the striatum has important implications for synaptic plasticity and disease states, the contribution of specific NMDA receptor subunits still remains to be elucidated. Here, we show that treatment of corticostriatal slices with NR2A antagonist NVP-AAM077 or with NR2A blocking peptide induces a significant increase of spine head width. Sustained treatment with D1 receptor agonist (SKF38393) leads to a significant decrease of NR2A-containing NMDA receptors and to a concomitant increase of spine head width. Interestingly, co-treatment of corticostriatal slices with NR2A antagonist (NVP-AAM077) and D1 receptor agonist augmented the increase of dendritic spine head width as obtained with SKF38393. Conversely, NR2B antagonist (ifenprodil) blocked any morphological effect induced by D1 activation. These results indicate that alteration of NMDA receptor composition at the corticostriatal synapse contributes not only to the clinical features of disease states such as experimental parkinsonism but leads also to a functional and morphological outcome in dendritic spines of medium spiny neurons. 相似文献
8.
Tina Tze-Tsang Tang John D. Badger II Paul A. Roche Katherine W. Roche 《The Journal of biological chemistry》2010,285(27):20975-20981
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes. 相似文献
9.
Increased glutamatergic input, particularly N-methyl-D-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser(1480) phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser(1480) phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension. 相似文献
10.
Welch WM Ewing FE Huang J Menniti FS Pagnozzi MJ Kelly K Seymour PA Guanowsky V Guhan S Guinn MR Critchett D Lazzaro J Ganong AH DeVries KM Staigers TL Chenard BL 《Bioorganic & medicinal chemistry letters》2001,11(2):177-181
Piriqualone (1) was found to be an antagonist of AMPA receptors. Structure activity optimization was conducted on each of the three rings in 1 to afford a series of potent and selective antagonists. The sterically crowded environment surrounding the N-3 aryl group provided sufficient thermal stability for atropisomers to be isolated. Separation of these atropisomers resulted in the identification of (+)-38 (CP-465,022), a compound that binds to the AMPA receptor with high affinity (IC50 = 36 nM) and displays potent anticonvulsant activity. 相似文献
11.
Verpelli C Dvoretskova E Vicidomini C Rossi F Chiappalone M Schoen M Di Stefano B Mantegazza R Broccoli V Böckers TM Dityatev A Sala C 《The Journal of biological chemistry》2011,286(40):34839-34850
Shank3/PROSAP2 gene mutations are associated with cognitive impairment ranging from mental retardation to autism. Shank3 is a large scaffold postsynaptic density protein implicated in dendritic spines and synapse formation; however, its specific functions have not been clearly demonstrated. We have used RNAi to knockdown Shank3 expression in neuronal cultures and showed that this treatment specifically reduced the synaptic expression of the metabotropic glutamate receptor 5 (mGluR5), but did not affect the expression of other major synaptic proteins. The functional consequence of Shank3 RNAi knockdown was impaired signaling via mGluR5, as shown by reduction in ERK1/2 and CREB phosphorylation induced by stimulation with (S)-3,5-dihydroxyphenylglycine (DHPG) as the agonist of mGluR5 receptors, impaired mGluR5-dependent synaptic plasticity (DHPG-induced long-term depression), and impaired mGluR5-dependent modulation of neural network activity. We also found morphological abnormalities in the structure of synapses (spine number, width, and length) and impaired glutamatergic synaptic transmission, as shown by reduction in the frequency of miniature excitatory postsynaptic currents (mEPSC). Notably, pharmacological augmentation of mGluR5 activity using 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide as the positive allosteric modulator of these receptors restored mGluR5-dependent signaling (DHPG-induced phosphorylation of ERK1/2) and normalized the frequency of mEPSCs in Shank3-knocked down neurons. These data demonstrate that a deficit in mGluR5-mediated intracellular signaling in Shank3 knockdown neurons can be compensated by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide; this raises the possibility that pharmacological augmentation of mGluR5 activity represents a possible new therapeutic approach for patients with Shank3 mutations. 相似文献
12.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors. 相似文献
13.
Schober DA Gill MB Yu H Gernert DL Jeffries MW Ornstein PL Kato AS Felder CC Bredt DS 《The Journal of biological chemistry》2011,286(15):13134-13142
AMPA receptors mediate fast excitatory transmission in the brain. Neuronal AMPA receptors comprise GluA pore-forming principal subunits and can associate with multiple modulatory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and CNIHs (cornichons). AMPA receptor potentiators and non-competitive antagonists represent potential targets for a variety of neuropsychiatric disorders. Previous studies showed that the AMPA receptor antagonist GYKI-53655 displaces binding of a potentiator from brain receptors but not from recombinant GluA subunits. Here, we asked whether AMPA receptor modulatory subunits might resolve this discrepancy. We find that the cerebellar TARP, stargazin (γ-2), enhances the binding affinity of the AMPA receptor potentiator [(3)H]-LY450295 and confers sensitivity to displacement by non-competitive antagonists. In cerebellar membranes from stargazer mice, [(3)H]-LY450295 binding is reduced and relatively resistant to displacement by non-competitive antagonists. Coexpression of AMPA receptors with CNIH-2, which is expressed in the hippocampus and at low levels in the cerebellar Purkinje neurons, confers partial sensitivity of [(3)H]-LY450295 potentiator binding to displacement by non-competitive antagonists. Autoradiography of [(3)H]-LY450295 binding to stargazer and γ-8-deficient mouse brain sections, demonstrates that TARPs regulate the pharmacology of allosteric AMPA potentiators and antagonists in the cerebellum and hippocampus, respectively. These studies demonstrate that accessory proteins define AMPA receptor pharmacology by functionally linking allosteric AMPA receptor potentiator and antagonist sites. 相似文献
14.
Pasternack A Coleman SK Jouppila A Mottershead DG Lindfors M Pasternack M Keinänen K 《The Journal of biological chemistry》2002,277(51):49662-49667
Ionotropic glutamate receptor (iGluR) subunits contain a approximately 400-residue extracellular N-terminal domain ("X domain"), which is sequence-related to bacterial amino acid-binding proteins and to class C G-protein-coupled receptors. The X domain has been implicated in the assembly, transport to the cell surface, allosteric ligand binding, and desensitization in various members of the iGluR family, but its actual role in these events is poorly characterized. We have studied the properties of homomeric alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA)-selective GluR-D glutamate receptors carrying N-terminal deletions. Our analysis indicates that, surprisingly, transport to the cell surface, ligand binding properties, agonist-triggered channel activation, rapid desensitization, and allosteric potentiation by cyclothiazide can occur normally in the complete absence of the X domain (residues 22-402). The relatively intact ligand-gated channel function of a homomeric AMPA receptor in the absence of the X domain indirectly suggests more subtle roles for this domain in AMPA receptors, e.g. in the assembly of heteromeric receptors and in synaptic protein interactions. 相似文献
15.
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance. 相似文献
16.
Accumulating evidence suggests that glycogen synthase kinase 3 (GSK-3) is a multifunctional kinase implicated in neuronal development, mood stabilization, and neurodegeneration. However, the synaptic actions of GSK-3 are largely unknown. In this study, we examined the impact of GSK-3 on AMPA receptor (AMPAR) channels, the major mediator of excitatory transmission, in cortical neurons. Application of GSK-3 inhibitors or knockdown of GSK-3 caused a significant reduction of the amplitude of miniature excitatory postsynaptic current (mEPSC), a readout of the unitary strength of synaptic AMPARs. Treatment with GSK-3 inhibitors also decreased surface and synaptic GluR1 clusters on dendrites and increased internalized GluR1 in cortical cultures. Rab5, the small GTPase controlling the transport from plasma membrane to early endosomes, was activated by GSK-3 inhibitors. Knockdown of Rab5 prevented GSK-3 inhibitors from regulating mEPSC amplitude. Guanyl nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab5 between membrane and cytosol, formed an increased complex with Rab5 after treatment with GSK-3 inhibitors. Blocking the function of GDI occluded the effect of GSK-3 inhibitors on mEPSC amplitude. In cells transfected with the non-phosphorylatable GDI mutant, GDI(S45A), GSK-3 inhibitors lost the capability to regulate GDI-Rab5 complex, mEPSC amplitude, and AMPAR surface expression. These results suggest that GSK-3, via altering the GDI-Rab5 complex, regulates Rab5-mediated endocytosis of AMPARs. It provides a potential mechanism underlying the role of GSK-3 in synaptic transmission and plasticity. 相似文献
17.
Multiple signaling pathways are involved in AMPAR trafficking to synapses during synaptic plasticity and learning. The mechanisms for how these pathways are coordinated in parallel but maintain their functional specificity involves subcellular compartmentalization of kinase function by scaffolding proteins, but how this is accomplished is not well understood. Here, we focused on characterizing the molecular machinery that functions in the sequential synaptic delivery of GluA1- and GluA4-containing AMPARs using an in vitro model of eyeblink classical conditioning. We show that conditioning induces the interaction of selective protein complexes with the key structural protein SAP97, which tightly regulates the synaptic delivery of GluA1 and GluA4 AMPAR subunits. The results demonstrate that in the early stages of conditioning the initial activation of PKA stimulates the formation of a SAP97-AKAP/PKA-GluA1 protein complex leading to synaptic delivery of GluA1-containing AMPARs through a SAP97-PSD95 interaction. This is followed shortly thereafter by generation of a SAP97-KSR1/PKC-GluA4 complex for GluA4 AMPAR subunit delivery again through a SAP97-PSD95 interaction. These data suggest that SAP97 forms the molecular backbone of a protein scaffold critical for delivery of AMPARs to the PSD during conditioning. Together, the findings reveal a cooperative interaction of multiple scaffolding proteins for appropriately timed delivery of subunit-specific AMPARs to synapses and support a sequential two-stage model of AMPAR synaptic delivery during classical conditioning. 相似文献
18.
Rusconi L Kilstrup-Nielsen C Landsberger N 《The Journal of biological chemistry》2011,286(42):36550-36558
Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. 相似文献
19.
Domercq M Alberdi E Sánchez-Gómez MV Ariz U Pérez-Samartín A Matute C 《The Journal of biological chemistry》2011,286(13):11825-11836
Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. 相似文献
20.
Sarah K. Coleman Tommi M?ykkynen Sami Hinkkuri Lauri Vaahtera Esa R. Korpi Olli T. Pentik?inen Kari Kein?nen 《The Journal of biological chemistry》2010,285(46):36032-36039
AMPA receptors (AMPARs) are tetrameric ion channels that mediate rapid glutamate signaling in neurons and many non-neuronal cell types. Endoplasmic reticulum (ER) quality control mechanisms permit only correctly folded functional receptors to be delivered to the cell surface. We analyzed the biosynthetic maturation and transport of all 12 GluA1–4 subunit splice variants as homomeric receptors and observed robust isoform-dependent differences in ER exit competence and surface expression. In contrast to inefficient ER exit of both GluA3 splice forms and the flop variants of GluA1 and GluA4, prominent plasma membrane expression was observed for the other AMPAR isoforms. Surprisingly, deletion of the entire N-terminal domain did not alter the transport phenotype, nor did the different cytosolic C-terminal tail splice variants. Detailed analysis of mutant receptors led to the identification of distinct residues in the ligand-binding domain as primary determinants for isoform-specific maturation. Considered together with the essential role of bound agonist, our findings reveal the ligand-binding domain as the critical quality control target in AMPAR biogenesis. 相似文献