首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiga toxins (Stxs) produced by Stx‐producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx‐mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte‐derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage‐like differentiated THP‐1 cells treated with Stxs secreted Stx‐associated exosomes (Stx‐Exo) of 90–130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3)‐dependent manner. Stx2‐Exo engulfed by Gb3‐positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK‐2. Stx2‐Exo contained pro‐inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2‐Exo‐mediated human renal cell death. Stx2‐Exo isolated from human primary monocyte–derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx‐containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin‐sensitive cells. Therapeutic interventions targeting Stx‐containing exosomes may prevent or ameliorate Stx‐mediated acute vascular dysfunction.  相似文献   

2.
Shiga toxin type 2 (Stx2a) is clinically most closely associated with enterohemorrhagic E. coli O157:H7-mediated hemorrhagic colitis that sometimes progresses to hemolytic-uremic syndrome. The ability to express the toxin has been acquired by other Escherichia coli strains, and outbreaks of food poisoning have caused significant mortality rates as, for example, in the 2011 outbreak in northern Germany. Stx2a, an AB5 toxin, gains entry into human cells via the glycosphingolipid receptor Gb3. We have determined the first crystal structure of a disaccharide analog of Gb3 bound to the B5 pentamer of Stx2a holotoxin. In this Gb3 analog, α-GalNAc replaces the terminal α-Gal residue. This co-crystal structure confirms previous inferences that two of the primary binding sites identified in the B5 pentamer of Stx1 are also functional in Stx2a. This knowledge provides a rationale for the synthesis and evaluation of heterobifunctional antagonists for E. coli toxins that target Stx2a. Incorporation of GalNAc Gb3 trisaccharide in a heterobifunctional ligand with an attached pyruvate acetal, a ligand for human amyloid P component, and conjugation to poly[acrylamide-co-(3-azidopropylmethacrylamide)] produced a polymer that neutralized Stx2a in a mouse model of Shigatoxemia.  相似文献   

3.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   

4.
5.
The hemolytic uremic syndrome (HUS) associated with diarrhea is a complication of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB) was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC) has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF) and platelet/endothelial cell adhesion molecule 1 (PECAM-1). HGEC also expressed the globotriaosylceramide (Gb3) receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 −a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.  相似文献   

6.
Infection with Shiga toxin (Stx)-producing, gram-negative bacteria can induce serious conditions such as dysentery and hemolytic uremic syndrome. In target cells, Stx is internalized by endocytosis, and travels through the Golgi apparatus and the endoplasmic reticulum to reach the cytosol, where it inhibits protein synthesis. Toll-like receptor 4 (TLR4) mediates the recognition of gram-negative bacteria. Here, we have investigated whether the cellular uptake and transport of Stx could involve TLR4. We found that upon small interfering RNA (siRNA)-mediated TLR4 depletion in epithelial colon carcinoma cells, Stx transport to the Golgi was strongly reduced, and this was primarily caused by diminished Stx cellular binding rather than by reduction in toxin uptake or endosome-to-Golgi transport. The reduced cellular binding of Stx upon siRNA-transfection was solely due to TLR4 depletion, because reconstitution of TLR4 expression by the introduction of an siRNA-resistant TLR4 gene completely abolished the TLR4-targeting siRNA-mediated effect. Importantly, the effect of TLR4 depletion was not restricted to cancer cells or epithelial cells, because primary human umbilical vein endothelial cells also displayed reduced Stx binding upon TLR4 depletion. These results indicate that although TLR4 is imperative in innate immunity against gram-negative bacteria, it may be exploited by bacterial toxins, for example Stx, to gain access and entry into cells.  相似文献   

7.
Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)‐producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A‐subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re‐evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS‐pathogenesis and to develop therapeutic approaches.  相似文献   

8.
9.
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.  相似文献   

10.
Haemolytic anaemia is one of the characteristics of life‐threatening extraintestinal complications in humans during infection with enterohaemorrhagic Escherichia coli (EHEC). Shiga toxins (Stxs) of EHEC preferentially damage microvascular endothelial cells of the kidney and the brain, whereby occluded small blood vessels may elicit anaemia through mechanical erythrocyte disruption. Here we show for the first time that Stx2a, the major virulence factor of EHEC, is also capable of direct targeting developing human erythrocytes. We employed an ex vivo erythropoiesis model using mobilized CD34+ haematopoietic stem/progenitor cells from human blood and monitored expression of Stx receptors and Stx2a‐mediated cellular injury of developing erythrocytes. CD34+ haematopoietic stem/progenitor cells were negative for Stx2a receptors and resistant towards the toxin. Expression of Stx2a‐binding glycosphingolipids and toxin sensitivity was apparent immediately after initiation of erythropoietic differentiation, peaked for basophilic and polychromatic erythroblast stages and declined during maturation into orthochromatic erythroblasts and reticulocytes, which became highly refractory to Stx2a. The observed Stx‐mediated toxicity towards erythroblasts during the course of erythropoiesis might contribute, although speculative at this stage of research, to the anaemia caused by Stx‐producing pathogens.  相似文献   

11.
Membrane microdomain association of the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), the highly and less effective receptors, respectively, for Shiga toxins (Stxs), is assumed as a functional requirement for Stx-mediated cytotoxicity. In a previous study, we demonstrated predominant localization of Stx receptors in cholesterol-enriched membrane microdomains of moderately Stx-sensitive human brain microvascular endothelial cells (HBMECs) by means of detergent-resistant membranes (DRMs). Here we report a different preferential distribution of Stx receptors in non-DRM fractions of human glomerular microvascular endothelial cells (GMVECs), the major targets of Stxs in the human kidney. Full structural characterization of Stx receptors using electrospray ionization (ESI) mass spectrometry revealed Gb3Cer and Gb4Cer lipoforms with ceramide moieties mainly composed of C24:0/C24:1 or C16:0 fatty acid and sphingosine (d18:1) in GMVECs comparable to those previously found in HBMECs. Thin-layer chromatography immunostaining demonstrated an approximately 2-fold higher content of Gb3Cer and a 1.4-fold higher content of Gb4Cer in GMVECs than in HBMECs. However, this does not explain the remarkable higher cytotoxic action of Stx1 and Stx2 toward GMVECs as compared with HBMECs. Our finding opens new questions on the microdomain association of Stx receptors and the functional role of GSLs in the membrane assembly of GMVECs.  相似文献   

12.
Shiga toxin-producing Escherichia coli (STEC), especially of serotype O157:H7, cause a zoonotic food or waterborne enteric illness that is often associated with large epidemic outbreaks as well as the hemolytic uremic syndrome (HUS), the leading cause of acute renal failure in children. After ingestion, STEC colonize enterocytes of the large bowel with a characteristic attaching and effacing pathology, which is mediated by components of a type III secretion apparatus encoded by the LEE pathogenicity island. Shiga toxins are translocated from the bowel to the circularoty system and transported by leukocytes to capillary endothelial cells in renal glomeruli and other organs. After binding to the receptor globotriaosylceramide on target cells, the toxin is internalized by receptor-mediated endocytosis and interacts with the subcellular machinery to inhibit protein synthesis. This leads to pathophysiological changes that result in HUS. Specific therapeutic or preventive strategies are presently not available. The recent sequencing of genomes of two epidemic E. coli O157 strains has revealed novel pathogenicity islands which will likely provide new insights into the virulence of these bacteria.  相似文献   

13.
Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) represents the major virulence factor responsible for the pig edema disease which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Stx2e-producing strains from the intestine of slaughtered pigs (n = 3), feces of piglets with postweaning diarrhea or edema disease (n = 12) and feces of humans with asymptomatic infections or mild diarrhea (n = 13) were comparatively analyzed for the binding specificities of Stx2e to glycosphingolipids (GSLs) of the globo-series. Besides equivalent binding towards globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), we could demonstrate specific interaction of Stx2e preparations from human and porcine STEC isolates with Forssman GSL. Notably, Forssman GSL was recognized neither by structurally closely related Stx2 nor by Stx1 derived from human STEC isolates conferring Stx2e a unique recognition feature. Noteworthy, 7 (54%) of the 13 human and 8 (53%) of the 15 pig Stx2e samples exhibited cytotoxic action towards human brain microvascular endothelial cells. Our findings provide a basis for further exploring the functional role of the promiscuous receptor repertoire of Stx2e and the exact nature of the mechanisms that underlie different pathological outcomes of Stx2e-producing STEC in humans and pigs.  相似文献   

14.

Background

Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable.

Methodology

We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells.

Results

By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells.

Conclusions

Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED50) of protein synthesis was about 10−11 M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.  相似文献   

15.
N-chlorotaurine (NCT), the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2), used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC). Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.  相似文献   

16.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

17.

Background  

Shiga toxins 1 and 2 (Stx1 and Stx2) are bacteriophage-encoded proteins that have been associated with hemorrhagic colitis, hemolytic uremic syndrome and other severe disease conditions. Stx1 and Stx2 are genetically and immunologically distinct but share the same compound toxin structure, method of entry and enzymatic function.  相似文献   

18.
Shiga toxins produced by Escherichia coli O157:H7 cause a wide spectrum of enteric diseases, such as lethal hemorrhagic colitis and hemolytic uremic syndrome. In this study, the B subunit protein of Shiga toxin type 1 (Stx1) was produced in the E. coli system, was further purified by Ni-column Affinity Chromatography method, and was then used as an immunogen to immunize laying hens for yolk immunoglobulin (IgY) production. Titers of IgY increased gradually with boosting vaccination and, finally, reached a level of 105, remaining steady over 1 year. Then the protective efficacy of IgY against Stx1 was evaluated by in vitro and in vivo experiments. It was shown that the anti-Stx1 IgY could effectively block the binding of Stx1 to the Hela cells and could protect BALB/c mice from toxin challenges. The data indicates the facility of using egg yolk IgY as a therapeutic intervention in cases of Shiga toxin intoxication.  相似文献   

19.
Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.  相似文献   

20.
Human intestinal cells lack globotriaosylceramide (Gb(3)), the receptor for Shiga toxin-1 (Stx1) and Shiga toxin-2 (Stx2). Therefore, the role of these toxins in mediating intestinal disease during infection with Shiga toxin-producing Escherichia coli is unclear. The aims of this study were to determine whether Stx1 and Stx2 induce apoptosis in epithelial cells expressing (HEp-2, Caco-2) or lacking (T84) Gb(3) and to characterize the role of the Bcl-2 family. Stx1 (12.5 ng/ml) induced apoptosis in both HEp-2 (21.9 +/- 7.9% vs. 0.8 +/- 0.3%, P = 0.01) and Caco-2 (10.1 +/- 1.2% vs. 3.1 +/- 0.4%, P = 0.006) cells but not in Gb(3)-deficient T84 cells. Toxin-mediated apoptosis of HEp-2 cells was associated with enhanced expression of the proapoptotic protein Bax. Inhibition of caspase activation prevented toxin-stimulated apoptosis. In addition, overexpression of Bcl-2 by transient transfection blocked Stx1-stimulated cell death. These findings indicate that Shiga toxins produced by E. coli signal Gb(3)-expressing epithelial cells to undergo apoptosis in association with enhanced Bax expression, thereby resulting in activation of the caspase cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号