首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Recently, Na, K-ATPase isoforms with differential affinities for digitalis have been identified that may contribute to different toxicity profiles. Our objectives were to localize them and to define tissue receptor patterns by examining the effect of different glycosides on the Na, K-ATPase activity. The digitalis derivatives used exhibit variation in lipophilicity and rate of enzyme inhibition. Membrane fractions enriched in Na, K-ATPase were prepared from canine heart, brain, aorta and peripheral nerves. The inhibition of enzyme activities indicates a pattern of differential sensitivities with IC50 values starting from 3 nM in heart and 30 nM in brain. Therefore, high and low affinity active forms of the Na, K-ATPase enzyme coexist in these tissues. The data also suggest the existence of two Na, K-ATPase isoforms in aorta and peripheral nerves as identified by the action of digitoxigenin and LND 796 where the predominant expression is that of a high affinity form. The comparison of the patterns of digitalis sensitivities in these different tissues, suggests a more complex molecular interaction than that which can be explained by the presence of only two forms.  相似文献   

2.
When applied to ischemic hearts digitalis exhibits depressed inotropic effect and increased toxicity. The molecular basis of these effects was investigated at the level of the digitalis receptors characterized by Na,K-ATPase assays and [3H]ouabain-binding measurements. In sarcolemma obtained from dog hearts rendered ischemic for 15, 30, and 60 min (left anterior descending), two populations (high and low affinity) of digitalis receptors were detected. The apparent affinity (KD, 300 nM) and the binding capacity of the low-affinity sites (responsible for toxicity) remained constant and similar to those found in normal hearts. The KD value of the high-affinity sites, "responsible for inotropy," remained unchanged (2 nM), but the site number sharply decreased (up to 90%). These inotropic sites that account for 66% of the total binding in normals are gradually inactivated, as the duration of ischemia increases. This inactivation would occur in situ since it was detectable in homogenates and was not depressed by the isolation procedure per se. The loss of function of the inotropic sites and the increased contribution of the low-affinity toxic sites represent the setting of a new distribution of the digitalis receptors in the ischemic heart before reperfusion is instituted. This constitutes the molecular basis of the deleterious pharmacological effects observed with digitalis.  相似文献   

3.
Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 alpha and beta isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K(+)-activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the alpha isoform. On the other hand, variations in external K(+) activation are determined by a cooperative interaction mechanism between alpha and beta isoforms with alpha2-beta2 complexes having the lowest apparent K(+) affinity. alpha Isoforms influence the apparent internal Na(+) affinity in the order alpha1 > alpha2 > alpha3 and the voltage dependence in the order alpha2 > alpha1 > alpha3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, alpha2-beta isozymes exhibit more rapid ouabain association as well as dissociation rate constants than alpha1-beta and alpha3-beta isozymes. Finally, isoform-specific differences exist in the K(+)/ouabain antagonism which may protect alpha1 but not alpha2 or alpha3 from digitalis inhibition at physiological K(+) levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.  相似文献   

4.
In human heart failure, disturbances in Ca2+ homeostasis are well known but the fate of the Na,K-ATPase isoforms (alpha1beta1, alpha2beta1 and alpha3beta1), the receptors for cardiac glycosides, still remains under study. Microsomes have been purified from non-failing human hearts. As judged by the sensitivities of Na,K-ATPase activity to ouabain (IC50 values: 7.0 +/- 2.5 and 81 +/- 11 nM), 3H-ouabain-binding measurements at equilibrium with and without 10 mM K+ and by a biphasic ouabain dissociation process, at least two finctionally active Na,K-ATPase isozymes coexist in normal human hearts. These are demonstrated as a very high- and a high affinity ouabain-binding site. The KD values are 3.6 +/- 1.6 nM and 17 +/- 6 nM, respectively. The two dissociation rate constants are 42 x 10(4) min(-1) and 360 x 10(-4) min(-1). Addition of 10 mM K+ ions shifted the respective KD values for ouabain from 3.6 +/- 1.6 to 20 +/- 5 nM and from 17 +/- 6 nM to 125 +/- 25 nM, respectively. The isozymes involved are identified by comparing these three pharmacological parameters to those of each alpha/beta-isozyme separately expressed in Xenopus oocytes (9). In human heart, the very high affinity site for ouabain is the alpha1beta1 dimer and the high affinity site is alpha2beta1.  相似文献   

5.
The cardiac glycoside sensitivity of the rat heart changes during postnatal maturation and in response to certain pathological conditions. The Na,K-ATPase is thought to be the receptor for cardiac glycosides, and there are three isozymes of its catalytic (alpha) subunit with different cardiac glycoside affinities: alpha 1 (low affinity) and alpha 2 and alpha 3 (high affinity). We examined the developmental expression of the alpha subunit isozymes in rat ventricular membrane preparations by immunoblotting with isozyme-specific antibodies. The alpha 1 isozyme was present throughout all stages of maturation. A developmental switch from alpha 3 to alpha 2 occurred between 14 and 21 days after birth. Measurements of [3H]ouabain binding and inhibition of Na,K-ATPase activity indicated that alpha 2 and alpha 3 should make equivalent contributions to ion pump capacity; in both neonatal natal and adult preparations, ouabain interacted with a single class of high-affinity binding sites (KD = 15 or 40 nM, respectively; Bmax = 4-5 pmol/mg protein), and at low concentrations produced a similar degree of Na,K-ATPase inhibition (25%). The results indicate that the developmental difference in cardiac glycoside sensitivity cannot be explained by quantitative differences in the proportion of high-affinity isozymes of the Na,K-ATPase. The switch from alpha 3 to alpha 2 coincides with other major changes in cardiac electrophysiology and calcium metabolism.  相似文献   

6.
The present study demonstrates that two forms of the alpha catalytic subunit of the Na,K-ATPase are present in rat heart and originate from cardiomyocytes. They were resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after reduction and alkylation of the sulfhydryl groups. The two forms were identified on immunoblots using two specific antisera against either the alpha subunit from Bufo marinus kidney and the alpha and beta subunits from lamb kidney. Comparison of the two forms to the alkylated Na,K-ATPase from rat kidney (containing one catalytic subunit) and from rat brain (containing alpha and alpha + subunits) suggested that, in rat cardiac myocytes, the form with a fast migration rate (alpha F) corresponds to the alpha subunit of low ouabain affinity and the one with a slow migration rate (alpha S), to a subunit of high ouabain affinity. Thus, the existence of two isoforms of the catalytic subunit in cardiac myocytes accounts well for the biphasic ouabain inhibition of the Na,K-ATPase activity and for the biphasic inotropic responsiveness to cardiac glycosides of the rat heart.  相似文献   

7.
Guinea pig left ventricular muscle contains two distinct molecular forms of the Na+/K(+)-ATPase catalytic alpha subunit. Sarcolemmal vesicles highly enriched in Na+/K(+)-ATPase were isolated by a new procedure that yielded specific activities of 60-100 mumol Pi.h-1.mg-1. SDS/PAGE of isolated sarcolemma after reduction and alkylation of the sulfhydryl groups and identification on immunoblots with specific anti-(alpha subunit) antibodies indicated the presence of two major polypeptides of 100 kDa and 103 kDa, respectively. The two alpha subunits were functional: the dose/response curves of Na+/K(+)-ATPase activity with ouabain, dihydroouabain and digitoxigenin were biphasic, revealing the presence of high-affinity [concentration of drug causing 50% inhibition (IC50) = 10 nM] and low-affinity (IC50 = 2 microM) forms with proportional contributions of 55% and 45%, respectively. The involvement of the high-affinity form in the positive inotropic effect of digitalis and of the low-affinity sites in both inotropy and toxicity are consistent with the literature data on rodents.  相似文献   

8.
The Na,K-ATPase has been only partially purified from nervous tissue, yet it is clear that two forms (and +) of the catalytic subunit are present. is a component subunit of the glial Na,K-ATPase, which has a relatively low affinity for binding cardiac glycosides and + has been identified as a subunit of the Na,K-ATPase which has relatively high affinity for cardiac glycosides. The + form may also be sensitive to indirect modulation by neurotransmitters or hormones. The ratio of + / changes in the nervous system during development, and + appears to be the predominant species in adult neurones. Changes in Na,K-ATPase activity have been associated with several abnormalities in the nervous system, including epilepsy and altered nerve conduction velocity, but a causal relationship has not been definitively established. Although the Na,K-ATPase has a pivotal role in Na+ and K+ transport in the nervous system, a special role for the glial Na,K-ATPase in clearing extracellular K+ remains controversial.  相似文献   

9.
Rat brain has the alpha 3 form of the (Na+,K+)ATPase   总被引:2,自引:0,他引:2  
Y M Hsu  G Guidotti 《Biochemistry》1989,28(2):569-573
Multiple forms of the catalytic subunit of the (Na+,K+)ATPase have been identified in rat brain. While two of them (alpha 1 and alpha 2) have been well characterized, the third form (alpha 3) of these catalytic subunits only recently has been described by cDNA cloning; the corresponding polypeptide has not been isolated. In this paper it is shown that rat brain contains the alpha 3 chain. The catalytic subunits of the (Na+, K+)ATPase from rat brain axolemma were purified by SDS-PAGE and subjected to formic acid cleavage. Amino acid sequence analysis of the resulting fragments revealed that axolemma has the alpha 3 form of the catalytic subunit. In addition, alpha 3-specific antiserum was raised in rabbits immunized with a synthetic peptide. Immunoblotting with this antiserum revealed that the alpha 3 form of the (Na+,K+)ATPase is present also in whole brain microsomes. In SDS-PAGE, the mobilities of the three catalytic subunits of brain (Na+, K+)ATPase follow the order alpha 1 greater than alpha 2 greater than alpha 3. Determination of the ouabain-inhibitable ATPase activity indicates that if the alpha 3 form of the (Na+,K+)ATPase is able to hydrolyze ATP, it is present in a form of the enzyme with a high affinity for this cardiac glycoside and is similar to the alpha 2 form in this respect.  相似文献   

10.
Two functional isoforms (1) and + (3) of the Na,K-ATPase catalytic subunit coexist in canine cardiac myocytes [J. Biol. Chem. (1987) 262, 8941-8943]. The in vitro turnover rates of ATP hydrolysis have been determined in sarcolemma preparations by comparing [3H]ouabain-binding and Na,K-ATPase activity at various doses of ouabain (0.3–300 nM). The correlation between the occupancy of the ouabain-binding sites and the degree of Na,K-ATPase inhibition was not linear. The results showed that the form of low-affinity for ouabain (Kd = 300–700 nM) exhibited a lower turnover rate (88 ± 10 vs. 147 ± 15 molecules of ATP hydrolyzed per second per ouabain-binding site) than the high affinity form (Kd = 1–8 nM). Thus our results indicate this specific isoform kinetic difference could contribute to differences in the cardiac cellular function.  相似文献   

11.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

12.
The Na,K-ATPase is a heterodimer composed of an alpha-catalytic and a beta-glycoprotein subunit. At present, three different alpha-polypeptides (alpha1, alpha2, alpha3) and two distinct beta-isoforms (beta1 and beta2) have been detected in human heart. The aim of the present study was to determine whether or not the beta3-isoform of the Na,K-ATPase can be detected in human heart. Using the highly sensitive method of RT-PCR, we here show that human heart expresses the beta3-isoform of the Na,K-ATPase. Given the differences in pharmacological properties of the nine different Na,K-ATPase isoenzymes (containing all combinations of the subunit isoforms), the study of beta3-isoform regulation in human heart may be of interest in understanding the altered response of human myocardium to digitalis therapy during heart failure.  相似文献   

13.
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).  相似文献   

14.
Adenylyl cyclase type 5 (AC5) is sensitive to both high and low affinity inhibition by Ca(2+). This property provides a sensitive feedback mechanism of the Ca(2+) entry that is potentiated by cAMP in sources where AC5 is commonly expressed (e.g. myocardium). Remarkably little is known about the molecular mechanism whereby Ca(2+) inhibits AC5. Because previous studies had showed that Ca(2+) antagonized the activation of adenylyl cyclase brought about by Mg(2+), we have now evaluated the Mg(2+)-binding domain in the catalytic site as the potential site of the interaction, using a number of mutations of AC5 with impaired Mg(2+) activation. Mg(2+) activation exerted contrasting effects on the high and low affinity Ca(2+) inhibition. In both wild type and mutants, activation by Mg(2+) decreased the absolute amount of high affinity inhibition without affecting the K(i) value, whereas the K(i) value for low affinity inhibition was decreased. These effects were directly proportional to the sensitivity of the mutants to Mg(2+). Parallel changes were noted in the efficacies of Ca(2+), Sr(2+), and Ba(2+) in the mutant species, suggesting a simple mutation in a shared domain. Strikingly, forskolin, which activates by a mechanism different from Mg(2+), did not modify inhibition by Ca(2+). Deletion of the N terminus and the C1b domain of AC5 and a chimera formed with AC2 confirmed that the catalytic domain alone was responsible for high affinity inhibition. We therefore conclude that both low and high affinity inhibition by Ca(2+) are exerted on different conformations of the Mg(2+)-binding sites in the catalytic domain of AC5.  相似文献   

15.
We have used hamster insulinoma tumor (HIT) cells, an insulin-secreting tumor cell line, to investigate modulation of the Na/K-ATPase and of the ATP-sensitive K channel (K(ATP)) by the sulfonylurea glyburide. Membrane proteins from cells cultured in RPMI with 11 mM glucose have at least two glyburide receptor populations, as evidenced by high and low binding affinity constants, (K(d) = 0.96 and 91 nM, respectively). In these cells K(ATP) channel activity was blocked by low glyburide concentrations, IC(50) = 5.4 nM. At 12.5 nM glyburide the inhibition developed slowly, tau = 380 s, and caused reduction of channel activity by 75 percent. At higher concentrations, however, inhibition occurred at a fast rate, tau = 42 s at 100 nM, and was almost complete. Na/K- ATPase activity measured enzymatically and electrophysiologically was also suppressed by glyburide, but higher concentrations were needed, IC(50) = 20-40 nM. Inhibition occurred rapidly, tau = 30 s at 50 nM, when maximum, activity was reduced by 40 percent. By contrast, cells cultured in RPMI supplemented with 25 mM glucose exhibit a single receptor population binding glyburide with low affinity, K(d)= 68 nM. In these cells inhibition of the Na/K-ATPase by the sulfonylurea was similar to that observed in cells cultured in 11 mM glucose, but K(ATP) channel inhibition was markedly altered. Inhibition occurred only at high concentrations of glyburide and at a fast rate; maximum inhibition was observed at 100 nM. Based on these data, we propose that glyburide binding to the high affinity site affects primarily K(ATP) channel activity, while interaction with the low affinity site inhibits both Na/K-ATPase and K(ATP) channel activities. The latter observation suggests possible functional interactions between the Na/K-ATPase and the K(ATP) channel.  相似文献   

16.
Ouabain and other cardiotonic steroids (CTS) inhibit Na(+) pumps and are widely believed to exert their cardiovascular effects by raising the cytosolic Na(+) concentration ([Na(+)](cyt)) and Ca(2+). This view has not been rigorously reexamined despite evidence that low-dose CTS may act without elevating [Na(+)](cyt); also, it does not explain the presence of multiple, functionally distinct isoforms of the Na(+) pump in many cells. We investigated the effects of Na(+) pump inhibition on [Na(+)](cyt) (with Na(+) binding benzofuran isophthalate) and Ca(2+) transients (with fura 2) in primary cultured arterial myocytes. Low concentrations of ouabain (3-100 nM) or human ouabain-like compound or reduced extracellular K(+) augmented hormone-evoked mobilization of stored Ca(2+) but did not increase bulk [Na(+)](cyt). Augmentation depended directly on external Na(+), but not external Ca(2+), and was inhibited by 10 mM Mg(2+) or 10 microM La(3+). Evoked Ca(2+) transients in pressurized small resistance arteries were also augmented by nanomolar ouabain and inhibited by Mg(2+). These results suggest that Na(+) enters a tiny cytosolic space between the plasmalemma (PL) and the adjacent sarcoplasmic reticulum (SR) via an Mg(2+)- and La(3+)-blockable mechanism that is activated by SR store depletion. The Na(+) and Ca(2+) concentrations within this space may be controlled by clusters of high ouabain affinity (alpha3) Na(+) pumps and Na/Ca exchangers located in PL microdomains overlying the SR. Inhibition of the alpha3 pumps by low-dose ouabain should raise the local concentrations of Na(+) and Ca(2+) and augment hormone-evoked release of Ca(2+) from SR stores. Thus the clustering of small numbers of specific PL ion transporters adjacent to the SR can regulate global Ca(2+) signaling. This mechanism may affect vascular tone and blood flow and may also influence Ca(2+) signaling in many other types of cells.  相似文献   

17.
betam, a muscle-specific protein, is structurally closely related to the X,K-ATPase beta subunits, but its intrinsic function is not known. In this study, we have expressed betam in Xenopus oocytes and have investigated its biosynthesis and processing as well as its putative role as a chaperone of X,K-ATPase alpha subunits, as a regulator of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), or as a Ca(2+)-sensing protein. Our results show that betam is stably expressed in the endoplasmic reticulum (ER) in its core glycosylated, partially trimmed form. Both full-length betam, initiated at Met(1), and short betam species, initiated at Met(89), are detected in in vitro translations as well as in Xenopus oocytes. betam cannot associate with and stabilize Na,K-ATPase (NK), or gastric and nongastric H,K-ATPase (HK) alpha isoforms. betam neither assembles stably with SERCA nor is its trypsin sensitivity or electrophoretic mobility influenced by Ca(2+). A mutant, in which the distinctive Glu-rich regions in the betam N-terminus are deleted, remains stably expressed in the ER and can associate with, but not stabilize X,K-ATPase alpha subunits. On the other hand, a chimera in which the ectodomain of betam is replaced with that of beta1 NK associates efficiently with alpha NK isoforms and produces functional Na,K-pumps at the plasma membrane. In conclusion, our results indicate that betam exhibits a cellular location and functional role clearly distinct from the typical X,K-ATPase beta subunits.  相似文献   

18.
Recent findings from our laboratory as well as those of other laboratories do not support the postulation that the mechanism of the positive inotropic action of digitalis is due to inhibition of NA,K-ATPase. Using short-acting digitalis steroids and drug washout experiments, in isolated myocardial preparations, it has been demonstrated that Na,K-ATPase isolated from such preparations is still significantly inhibited, whereas the positive inotropic effect is no longer present. Also, based on kinetic measurements the two exponential rate constants observed for drug half-life, a rapid and slow phase, were found to be associated, respectively, with the very short inotropic half-life and the very long enzyme inhibition half-life. In addition, a dissociation of the transient inotropic effects of digitalis was observed from the long lasting cardiotoxic effects of digitalis during drug washout. Moreover, a temporal correlation was noted between the persistent inhibitory effects of digitalis on Na,K-ATPase and the persistent cardiotoxic effects of digitalis. Therefore, it is concluded that inhibition of Na,K-ATPase is not responsible for the positive inotropic action of digitalis, but may be the mechanism, at least in part, for certain cardiotoxic effects of digitalis.  相似文献   

19.
We describe and compare the main kinetic characteristics of the (alpha beta)(2) form of rabbit kidney Na,K-ATPase. The dependence of ATPase activity on ATP concentration revealed high (K(0.5)=4 microM) and low (K(0.5)=1.4 mM) affinity sites for ATP, exhibiting negative cooperativity and a specific activity of approximately 700 U/mg. For p-nitrophenylphosphate (PNPP) as substrate, a single saturation curve was found, with a smaller apparent affinity of the enzyme for this substrate (K(0.5)=0.5 mM) and a lower hydrolysis rate (V(M)=42 U/mg). Stimulation of ATPase activity by K(+) (K(0.5)=0.63 mM), Na(+) (K(0.5)=11 mM) and Mg(2+) (K(0.5)=0.60 mM) all showed V(M)'s of approximately 600 U/mg and negative cooperativity. K(+) (K(0.5)=0.69 mM) and Mg(2+) (K(0.5)=0.57 mM) also stimulated PNPPase activity of the (alpha beta)(2) form. Ouabain (K(0.5)=0.01 microM and K(0.5)=0.1 mM) and orthovanadate (K(0.5)=0.06 microM) completely inhibited the ATPase activity of the (alpha beta)(2) form. The kinetic characteristics obtained constitute reference values for diprotomeric (alpha beta)(2)-units of Na,K-ATPase, thus contributing to a better understanding of the biochemical mechanisms of the enzyme.  相似文献   

20.
The role of multiple isoforms for the alpha subunit of Na,K-ATPase is essentially unknown. To examine the functional properties of the three alpha subunit isoforms, we developed a system for the heterologous expression of Na,K-ATPase in which the enzymatic activity of each isoform can be independently analyzed. Ouabain-resistant forms of the rat alpha 2 and alpha 3 subunits were constructed by site-directed mutagenesis of amino acid residues at the extracellular borders of the first and second transmembrane domains (L111R and N122D for alpha 2 and Q108R and N119D for alpha 3). cDNAs encoding the rat alpha 1 subunit, which is naturally ouabain-resistant, and rat alpha 2 and alpha 3, which were mutated to ouabain resistance (designated rat alpha 2* and rat alpha 3*, respectively) were cloned into an expression vector and transfected into HeLa cells. Resistant clones were isolated and analyzed for ouabain-inhibitable ATPase activity in the presence of 1 microM ouabain, which inhibits the endogenous Na,K-ATPase present in HeLa cells (I50 approximately equal to 10 nM). The remaining activity corresponds to Na,K-ATPase molecules containing the transfected rat alpha 1, rat alpha 2*, or rat alpha 3* isoforms. Utilizing this system, we examined Na+, K+, and ATP dependence of enzyme activity. Na,K-ATPase molecules containing rat alpha 1 and rat alpha 2* exhibited a 2-3-fold higher apparent affinity for Na+ than those containing rat alpha 3* (apparent KNa+ (millimolar): rat alpha 1 = 1.15 +/- 0.13; rat alpha 2* = 1.05 +/- 0.11; rat alpha 3* = 3.08 +/- 0.06). Additionally, rat alpha 3* had a slightly higher apparent affinity for ATP (in the millimolar concentration range) compared with rat alpha 1 or rat alpha 2* (apparent K0.5 (millimolar): rat alpha 1 = 0.43 +/- 0.12; rat alpha 2* = 0.54 +/- 0.15; rat alpha 3* = 0.21 +/- 0.04) and all three isoforms has similar apparent affinities for K+ (apparent KK+: rat alpha 1 = 0.45 +/- 0.01; rat alpha 2* = 0.43 +/- 0.004; rat alpha 3* = 0.27 +/- 0.01). This study represents the first comparison of the functional properties of the three Na,K-ATPase alpha isoforms expressed in the same cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号