首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results from T-10 experiments in regimes with nonmonotonic plasma current profiles are presented. The possibility of controlling the current profile j(r) by electron-cyclotron current drive is demonstrated experimentally. Nonmonotonic q profiles with the reversed shear are obtained in which the q min value varies in a wide range, q min=1–2.3. It is shown that the current profiles with q min~2 (in this case, there are two resonant magnetic surfaces q=2 in the plasma) can cause the onset of MHD instabilities. The possibility of the formation of an internal transport barrier in reversed-shear discharges in the T-10 tokamak is analyzed. In T-10, electron transport is governed by short-wavelength electron turbulence. As a result, there is no clear evidence of the formation of an inner transport barrier in these experiments.  相似文献   

2.
The absolute VUV and soft X-ray (hν > 100 eV) yield from a micropinch discharge is measured for a fixed current of 150 kA. The current scaling in the range of 30–250 kA is found for a number of the discharge parameters: the VUV and soft X-ray yield, the electron temperature, the effective temperature of suprathermal electrons, and the energy of bremsstrahlung emission from thermal electrons. The experimental data are in good agreement with the simulations performed by using the model of radiative collapse in fast Z-pinches in plasmas of high-Zelements.  相似文献   

3.
Results are presented from experimental studies of fast Z-pinches produced in plasmas of high-Z elements. An analysis of a plasma structure emitting X radiation and time-resolved measurements of the electron emission showed that a self-consistent regime of electron and ion motion is established in the plasma channel of the discharge. It was found that, in this regime, the electron component makes a negative contribution to the net current and an electrically neutral supersonic plasma flow propagates along the discharge axis in the direction of the net current.  相似文献   

4.
A physical model for the enhanced transport code is presented, which explicitly takes into account the contribution of turbulent convection to the processes of particle and heat transport in the hot core of the tokamak plasma. The model is based on the specially developed CONTRA-A turbulent block, while an adapted version of the existing ASTRA transport code is used as a transport envelope. The CONTRA-A turbulent block, based on the adiabatically reduced quasi-2D magnetohydrodynamic equations, calculates the generation and self-consistent evolution of low-frequency turbulence, including the spatiotemporal structure of turbulent fluctuations of the plasma velocity, density, and temperatures of electrons and ions. Using the obtained data on fluctuations, the CONTRA-A block calculates the turbulent-convective particle and heat fluxes and transfers them to the modified ASTRA code, which computes the evolution of quasi-equilibrium plasma parameters. To illustrate the capabilities of the enhanced transport model, the results of simulations of turbulent plasma evolution in two discharge scenarios with nonstationary auxiliary plasma heating in the T-10 and T-15MD tokamaks are presented.  相似文献   

5.
Results are presented from experiments on the formation of an internal electron transport barrier near the q = 1.5 rational surface in the T-10 tokamak. The experiments were carried out in the regime with off-axis electron cyclotron resonance (ECR) heating followed by a fast plasma current ramp-up. After suppressing sawtooth oscillations by off-axis ECR heating, an internal transport barrier began to form near the q = 1.5 rational surface. In the phase of the current ramp-up, the quality of the transport barrier improved; as a result, the plasma energy confinement time increased 2–2.5 times. The intentionally produced flattening of the profile of the safety factor q(r) insignificantly affected magnetohydrodynamic activity in the plasma column in spite of the theoretical possibility of formation of substantial m/n = 3/2 and 2/1 magnetic islands. Conditions are discussed under which the flattening of the profile of the safety factor q near low-order rational surfaces leads to the formation of either an internal transport barrier or the development of an island magnetic structure induced by tearing modes.  相似文献   

6.
Results are presented from experiments on the X-ray backlighting of the axial region of an imploding high-current multiwire liner. Backlighting was performed with the use of an X-pinch serving as a source of soft X-ray emission, which was recorded by pin diodes. The use of several filters with different passbands in front of the pin diodes allowed the interpretation of the results of measurements in experiments with cascade composite liners. The sensitivity of the diagnostics was ≈125 µg/cm2 for a plasma of high-Z elements (W) and ≈220 µg/cm2 for a plasma of low-Z elements (C, O, N) at a photon energy of the probing radiation of 1.0–1.5 keV. An advantage of the method is its high time resolution (≈1 ns) and the possibility of the separation in time of the emission bursts from Z-and X-pinches on the liner axis. The method does not impose restrictions on the pulse duration of the backlighting radiation source.  相似文献   

7.
The results of experimental studies of discharge disruptions in the T-10 tokamak at the limiting plasma density are presented. On the basis of measurements of the generated soft X-ray emission, for a group of “slow” disruptions, the dynamics of the magnetic configuration of the central part of the plasma column is studied and the possible role of the m/n = 1/1 mode in the excitation of predisruptions or the final stage of disruption is analyzed. It is shown that the characteristics of plasma electron cooling in predisruptions correspond to those of electron cooling upon pellet injection into T-10 and in discharge predisruptions occurring in regimes with the “quiet mode.” It is found that, in the latter case, the reason for predisruptions and fast electron cooling in the plasma core is the instability of the m/n = 2/1 mode, its spontaneous spatial reconstruction, and the generation of a “cooling wave” during this process. Measurements of the electron temperature (determined from the plasma radiation intensity at the second electron cyclotron harmonic) in the zone of the m/n = 2/1 mode have shown that the transformation of the m/n = 2/1 mode leads to the excitation of predisruptions and the final phase of disruption not only in regimes with the “quiet mode,” but also in disruptions of ordinary ohmic discharges. The experimental results obtained in this work make it possible to determine the scenario of the development of “slow” discharge disruptions in the T-10 tokamak at the limiting plasma density.  相似文献   

8.
The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.  相似文献   

9.
The energy balance in the interaction of intense (W≈7 MW/cm2, Q≈130 J/cm2) flows of a high-temperature (T e+T i≈0.7 keV deuterium plasma with targets made of different materials (graphite, tungsten, copper, etc.) is studied experimentally. It is shown that radiation plays a decisive role in the interaction energy balance: a plasma layer arising near the surface of the eroded target reemits most of the plasma-flow energy into the surrounding space. No more than 50 J/cm2 reaches the surface. Then, this energy is expended primarily on the target heating and only a small fraction (less than 3 J/cm2) is spent on the evaporation of the target surface layer. It is shown that, for targets made of high-Z materials, the energy reaching the surface is transferred predominantly by radiation.  相似文献   

10.
Improvement of plasma energy confinement in the T-10 tokamak by injection of impurity gases was studied experimentally. Injection of Ne and He in the ohmic and ECR heating regimes allows one to separate the dependences of energy confinement on the plasma density and on the edge plasma cooling rate. It is shown that the well-known dependence of the energy confinement time on the plasma density is, in fact, the dependence on the radiative loss power. This phenomenon can be explained by plasma self-organization. The experiments are described by a thermodynamic model for self-organized plasma in which the transport coefficient depends on the difference between the actual and self-consistent pressure profiles. The reduction in the heat flux at the plasma edge due to radiative cooling leads to a decrease in the transport coefficient in this region and, accordingly, improves energy confinement. Results of approximate model calculations for experiments with Ne injection are presented.  相似文献   

11.
Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~107 GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E СН/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E СL/Z ≤ 3 × 106 GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E CL ~ 1017 eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 106 GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.  相似文献   

12.
In experiments on studying the ohmic H-mode in the TUMAN-3M tokamak, it is found that, in high-current (I p~120–170 kA) discharges, a region with high electron-temperature and density gradients is formed in the plasma core. In this case, the energy confinement time τ E attains 9–18 ms, which is nearly twice as large as that predicted by the ELM-free ITER-93H scaling. This is evidence that the internal transport barrier in a plasma can exist without auxiliary heating. Calculations of the effective thermal diffusivity by the ASTRA transport code demonstrate a strong suppression of heat transport in the region where the temperature and density gradients are high.  相似文献   

13.
The effect of an RF field on a steady-state beam-plasma discharge with a plane electrode placed parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a single probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The energy and current of the electron beam were E B=2.5 keV and J B=0.05–1.5 A, respectively. The working pressure was p=2×10?5–10?3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump frequency toward its harmonics.  相似文献   

14.
The features are studied of plasma production in the initial stage of implosion of hollow cylindrical wire arrays at electric-field growth rates of 1012 V/(cm s). The results are presented from the analysis of both UV emission from the wire plasma and the discharge parameters in the initial stage of the formation of a Z-pinch discharge. It is found that, a few nanoseconds after applying voltage to a tungsten wire array, a plasma shell arises on the wire surface and the array becomes a heterogeneous system consisting of metal wire cores and a plasma surrounding each wire (a plasma corona). As a result, the current switches from the wires to the plasma. A further heating and ionization of the wire material are due primarily to heat transfer from the plasma corona. A model describing the primary breakdown along the wires is created with allowance for the presence of low-Z impurities on the wire surface.  相似文献   

15.
Numerical aspects of the method for diagnosing a tokamak plasma with the help of the discrete Alfvén wave spectrum are considered. It is shown that this diagnostics should be supported with highly accurate computational tools. A code suitable for implementing the relevant calculation scheme is developed, which makes it possible to identify the eigenmodes numerically with the desired accuracy. The code can also provide recommendations for performing tokamak experiments and can be used to study the possibility of auxiliary plasma heating by Alfvén waves. The discrete Alfvén wave spectrum, radial profiles of the energy deposited in the plasma, and the dependence of the Alfvén mode frequencies on the damping rate and on the class of the current-density profiles chosen are calculated for the first time for the T-10 tokamak. It is also shown that the diagnostic method proposed makes it possible to obtain reliable information about the plasma parameters.  相似文献   

16.
Analysis of the experimental profiles of the plasma density and pressure in the T-10 tokamak shows that in the plasma core they are close to the corresponding canonical profiles. This allows one to construct an expression for the particle flux in terms of the canonical profile model. T-10 experiments performed with ohmic discharges have revealed transitions from improved to low particle confinement, similar to the effect of the density pump-out from the central part of the plasma upon switching-on of the electron cyclotron resonance heating (ECRH). It is shown that such a change in the particle confinement is associated with the deviation of the radial pressure profile from the canonical one. A nonlinear model of particle transport in discharges with density variations that allows for the transition effects is proposed. The plasma density evolution is numerically simulated for a number of ohmic and ECRH T-10 discharges.  相似文献   

17.
The experiments carried out at the FT-2 tokamak in which additional pulsed puffing of helium into the hydrogen plasma was used for diagnostic purposes are considered. To estimate the necessary content of helium ions in the experiments on studying short-scale plasma oscillations, the ionization-recombination balance was simulated numerically under the assumption of a toroidally homogeneous influx of the working gas onto the boundary of the plasma column. In these simulations, the effective density of the neutral gas incident on the plasma boundary was determined by the iteration method, which made it possible to provide agreement between the obtained solution and the experimental discharge conditions. In particular, the correspondence of the determined admixture content to both the plasma quasineutrality condition and the value of the effective charge Z eff, as well as agreement between the calculated and measured plasma density profiles, was ensured. The simulations were performed under the assumption of anomalous diffusion coefficients for all plasma components. The temporal variations of the ionization-recombination balance were checked by comparing them with the measured spectra of radiation in the HeI, HeII, and H?? lines. In the current drive experiments, variations in n e (r) at the discharge periphery were examined by the method based on the proportionality of the intensity ratio of the helium spectral lines, HeI(668 nm)/HeI(728 nm), to the plasma density. In these calculations, the factors relating the intensity ratio of these lines to the plasma density were taken from the literature on spectral diagnostics.  相似文献   

18.
An improved confinement regime with an external transport barrier (H-mode) is obtained during electron-cyclotron resonance heating of a plasma in the T-10 tokamak. A characteristic feature of this regime is a spontaneous density growth accompanied by a drop in the intensity of Dα line and an increase in βp by a factor of ~1.6. The threshold power for the L-H transition is close to that predicted by the ITER scaling. The best characteristics of the H-mode are achieved with decreasing q L to 2.2. It is shown that the external transport barrier arises for electrons, whereas the heat transport barrier insignificantly contributes to improved confinement.  相似文献   

19.
Turbulent dynamics of the edge plasma in the T-10 tokamak is simulated numerically by solving nonlinear MHD equations in the framework of the four-field {?, n, p e , p i } reduced two-fluid Braginskii hydro-dynamics. It is shown that the transition from ohmic to electron-cyclotron heating is accompanied by a decrease in the amplitudes of turbulent fluctuations in plasma. This is caused by the enhancement of longitudinal dissipation due to the increase in the electron temperature. However, phase relations between potential fluctuations of different modes change in such a way that the Reynolds turbulent force increases, which leads to an increase in the poloidal velocity in the direction of ion diamagnetic drift. Since the poloidal and ion diamagnetic drift velocities enter into the equation of the radial force balance for ions with different signs, the radial electric field decreases. The simulation results agree qualitatively with the results of experiments in the T-10 tokamak. The dependence of the radial electric field on the plasma density, ion pressure, and neutral density is also calculated.  相似文献   

20.
The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 104 to 1016 cm?3 was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号