首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual conflict over reproductive investment can lead to sexually antagonistic coevolution and reproductive isolation. It has been suggested that, unlike most models of allopatric speciation, the evolution of reproductive isolation through sexually antagonistic coevolution will occur faster in large populations as these harbour greater levels of standing genetic variation, receive larger numbers of mutations and experience more intense sexual selection. We tested this in bruchid beetle populations (Callosobruchus maculatus) by manipulating population size and standing genetic variability in replicated lines derived from founders that had been released from sexual conflict for 90 generations. We found that after 19 generations of reintroduced sexual conflict, none of our treatments had evolved significant overall reproductive isolation among replicate lines. However, as predicted, measures of reproductive isolation tended to be greater among larger populations. We discuss our methodology, arguing that reproductive isolation is best examined by performing a matrix of allopatric and sympatric crosses whereas measurement of divergence requires crosses with a tester line.  相似文献   

2.
We evaluated the degree of reproductive isolation between laboratory populations of the seed beetle (Acanthoscelides obtectus) selected to reproduce early (E) or late (L) in life, where different levels of sexual activity and sexual discrimination have been detected. We found a significant level of behavioral isolation among populations within the E selection regime in which beetles showed enhanced early‐life fitness traits and low sexual activity. In contrast, substantially higher levels of sexual activity and an indiscriminate mating system inhibited rather than promoted pre‐zygotic isolation between the L populations. Our results indicate that the study of sexual activity levels may be crucial for understanding the first steps in the pre‐zygotic isolation among allopatric populations subjected to uniform selection.  相似文献   

3.
Ecological speciation occurs when reproductive isolation evolves as a consequence of divergent natural selection among environments. A direct prediction of this process is that ecologically divergent pairs of populations will exhibit greater reproductive isolation than ecologically similar pairs of populations. By comparing allopatric populations of the cynipid gall wasp Belonocnema treatae infesting Quercus virginiana and Quercus geminata, we tested the role that divergent host use plays in generating ecological divergence and sexual isolation. We found differences in body size and gall structure associated with divergent host use, but no difference in neutral genetic divergence between populations on the same or different host plant. We observed significant assortative mating between populations from alternative host plants but not between allopatric populations on the same host plant. Thus, we provide evidence that divergent host use promotes speciation among gall wasp populations.  相似文献   

4.
5.
Theoretical models predict that sexual conflict can drive reproductive isolation by decreasing the probability of matings between individuals from allopatric populations. A recent study in dung flies supported this prediction. To test the generality of this finding we used replicate lines of Drosophila melanogaster that had been selected under high, medium and low levels of sexual conflict, in which the females had evolved differences in their level of resistance to male-induced harm. We compared the proportion of virgin pairs that mated by set time points, for flies from the same replicate within each sexual conflict level vs. flies from different replicates within each sexual conflict level. The results did not support the prediction that, in D. melanogaster, sexual conflict drives population divergence via changes in female willingness to mate. The results were unlikely to be explained by differential inbreeding or by a lack of response to sexual conflict.  相似文献   

6.
The contemporary dynamics of sexually antagonistic coevolution caused by sexual conflicts have seldom been investigated at the intraspecific level. We characterized natural populations of Gerris gillettei and documented significant intersexual correlations for morphological traits previously related to sexual conflict in water striders. These results strongly indicate that sexually antagonistic coevolution contributed to population differentiation and resulted in different balances of armaments between the sexes within natural populations of this species. No-choice mating experiments further revealed that both male and male-female relative arms levels influence copulation duration. However, there were no asymmetries in reproductive behaviour and fitness between sympatric and allopatric mating pairs, suggesting that differentiation by sexual conflict was not sufficient to influence the outcome of mating interactions. Altogether, these results question the relative importance of female connexival spines vs. genitalia traits in mediating pre- and post-copulatory conflict in Gerris.  相似文献   

7.
Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism.  相似文献   

8.
Sexual selection can facilitate divergent evolution of traits related to mating and consequently promote speciation. Theoretically, independent operation of sexual selection in different populations can lead to divergence of sexual traits among populations and result in allopatric speciation. Here, we show that divergent evolution in sexual morphology affecting mating compatibility (body size and genital morphologies) and speciation have occurred in a lineage of millipedes, the Parafontaria tonominea species complex. In this millipede group, male and female body and genital sizes exhibit marked, correlated divergence among populations, and the diverged morphologies result in mechanical reproductive isolation between sympatric species. The morphological divergence occurred among populations independently and without any correlation with climatic variables, although matching between sexes has been maintained, suggesting that morphological divergence was not a by-product of climatic adaptation. The diverged populations underwent restricted dispersal and secondary contact without hybridization. The extent of morphological difference between sympatric species is variable, as is diversity among allopatric populations; consequently, the species complex appears to contain many species. This millipede case suggests that sexual selection does contribute to species richness via morphological diversification when a lineage of organisms consists of highly divided populations owing to limited dispersal.  相似文献   

9.
We review the significance of two forms of sexual conflict (different evolutionary interests of the two sexes) for genetic differentiation of populations and the evolution of reproductive isolation. Conflicting selection on the alleles at a single locus can occur in males and females if the sexes have different optima for a trait, and there are pleiotropic genetic correlations between the sexes for it. There will then be selection for sex limitation and hence sexual dimorphism. This sex limitation could break down in hybrids and reduce their fitness. Pleiotropic genetic correlations between the sexes could also affect the likelihood of mating in interpopulation encounters. Conflict can also occur between (sex-limited) loci that determine behaviour in males and those that determine behaviour in females. Reproductive isolation may occur by rapid coevolution of male trait and female mating preference. This would tend to generate assortative mating on secondary contact, hence promoting speciation. Sexual conflict resulting from sensory exploitation, polyspermy and the cost of mating could result in high levels of interpopulation mating. If females evolve resistance to make pre- and postmating manipulation, males from one population could be more successful with females from the other, because females would have evolved resistance to their own (but not to the allopatric) males. Between-locus sexual conflict could also occur as a result of conflict between males and females of different populations over the production of unfit hybrids. We develop models which show that females are in general selected to resist such matings and males to persist, and this could have a bearing on both the initial level of interpopulation matings and the likelihood that reinforcement will occur. In effect, selection on males usually acts to promote gene flow and to restrict premating isolation, whereas selection on females usually acts in the reverse direction. We review theoretical models relevant to resolution of this conflict. The winning role depends on a balance between the ''value of winning'' and ''power'' (relating to contest or armament costs): the winning role is likely to correlate with high value of winning and low costs. Sperm-ovum (or sperm-female tract) conflicts (and their plant parallels) are likely to obey the same principles. Males may typically have higher values of winning, but it is difficult to quantify ''power'', and females may often be able to resist mating more cheaply than males can force it. We tentatively predict that sexual conflict will typically result in a higher rate of speciation in ''female-win'' clades, that females will be responsible for premating isolation through reinforcement, and that ''female-win'' populations will be less genetically diverse.  相似文献   

10.
Reinforcement occurs when hybridization between closely related lineages produces low‐fitness offspring, prompting selection for elevated reproductive isolation specifically in areas of sympatry. Both premating and postmating prezygotic behaviors have been shown to be the target of reinforcing selection, but it remains unclear whether remating behaviors experience reinforcement, although they can also influence offspring identity and limit formation of hybrids. Here, we evaluated evidence for reinforcing selection on remating behaviors in Drosophila pseudoobscura, by comparing remating traits in females from populations historically allopatric and sympatric with Drosophila persimilis. We found that the propensity to remate was not higher in sympatric females, compared to allopatric females, regardless of whether the first mated male was heterospecific or conspecific. Moreover, remating behavior did not contribute to interspecific reproductive isolation among any population; that is, females showed no higher propensity to remate following a heterospecific first mating than following a conspecific first mating. Instead, we found that females are less likely to remate after initial matings with unfamiliar males, regardless of species identity. This is consistent with one scenario of postmating sexual conflict in which females are poorly defended against postcopulatory manipulation by males with whom they have not coevolved. Our results are generally inconsistent with reinforcement on remating traits and suggest that this behavior might be more strongly shaped by the consequences of local antagonistic male–female interactions than interactions with heterospecifics.  相似文献   

11.
Abstract .Theory predicts that sexual (or behavioral) isolation will be the first form of reproductive isolation to evolve in lineages characterized by sexual selection. Here I directly compare the rate of evolution of sexual isolation with that of hybrid inviability in a diverse and sexually dimorphic genus of freshwater fish. The magnitude of both sexual isolation and hybrid inviability were quantified for multiple pairs of allopatric species. Rates of evolution were inferred by comparing genetic distances of these species pairs with the magnitude of each form of reproductive isolation: the slope of the regression of genetic distance on the magnitude of reproductive isolation represents the rate of evolution. Of the two forms of isolation, the magnitude of sexual isolation exhibited the steeper slope of regression, indicating that sexual isolation will tend to evolve to completion earlier than hybrid inviability, strictly as a by-product of evolution in geographically isolated populations. Additional evidence from the literature is used to qualitatively compare rates of evolution of sexual isolation with that of other forms of reproductive isolation. Preliminary comparisons support the prediction that sexual isolation will evolve more rapidly than other forms. Because Etheostoma is characterized by striking sexual dimorphism, these results are consistent with the hypothesis that sexual selection for exaggerated mate-recognition characters causes the relatively rapid evolution of sexual isolation.  相似文献   

12.
Theory suggests that, under some circumstances, sexual conflict over mating can lead to divergent sexually antagonistic coevolution among populations for traits associated with mating, and that this can promote reproductive isolation and hence speciation. However, sexual conflict over mating may also select for traits (e.g. male willingness to mate) that enhance gene flow between populations, limiting population divergence. In the present study, we compare pre‐ and post‐mating isolation within and between two species characterized by male–female conflict over mating rate. We quantify sexual isolation among five populations of the seed bug Lygaeus equestris collected from Italy and Sweden, and two replicates of a population of the sister‐species Lygaeus simulans, also collected from Italy. We find no evidence of reproductive isolation amongst populations of L. equestris, suggesting that sexual conflict over mating has not led to population divergence in relevant mating traits in L. equestris. However, there was strong asymmetric pre‐mating isolation between L. equestris and L. simulans: male L. simulans were able to mate successfully with female L. equestris, whereas male L. equestris were largely unable to mate with female L. simulans. We found little evidence for strong post‐mating isolation between the two species, however, with hybrid F2 offspring being produced. Our results suggest that sexual conflict over mating has not led to population divergence, and indeed perhaps supports the contrary theoretical prediction that male willingness to mate may retard speciation by promoting gene flow.  相似文献   

13.
When interactions with heterospecifics prevent females from identifying conspecific mates, natural selection can promote the evolution of mating behaviours that minimize such interactions. Consequently, mating behaviours may diverge among conspecific populations in sympatry and in allopatry with heterospecifics. This divergence in conspecific mating behaviours-reproductive character displacement-can initiate speciation if mating behaviours become so divergent as to generate reproductive isolation between sympatric and allopatric conspecifics. We tested these ideas by using artificial neural networks to simulate the evolution of conspecific mate recognition in populations sympatric and allopatric with different heterospecifics. We found that advertisement calls diverged among the different conspecific populations. Consequently, networks strongly preferred calls from their own population to those from foreign conspecific populations. Thus, reproductive character displacement may promote reproductive isolation and, ultimately, speciation among conspecific populations.  相似文献   

14.
Erlandsson  J.  Rolán-Alvarez  E. 《Hydrobiologia》1998,378(1-3):59-69
Two independent components of mating behaviour, sexual selection and assortative mating, were studied in two allopatric morphs, one sheltered boulder shore form (S-morph) and one exposed cliff shore form (E-morph), of Littorina saxatilis from the west coast of Sweden. Sexual selection was studied by comparing the sizes of copulating and non-copulating snails in the field. Size assortative mating was studied by collecting copulating pairs in the field, while assortative mating between morphs was investigated by bringing the pure morphs together in intermediary habitats and then noting the matings. The S-morph mated randomly in relation to size in two of the studied populations and exhibited a trend towards size assortative mating in a third, while the E-morph showed size assortative mating in both studied populations. The microdistribution of sizes of snails on the shores could not explain all the size assortative mating found, and instead it is argued that a size-based mate rejection behaviour also contributes to the assortative mating in at least some of these populations. There was sexual selection on size in both males and females in the S-morph, with large individuals being favoured as mates. In contrast, copulating snails of the E-morph were smaller than non-copulating ones. The significantly different sexual selection intensities between the two morphs may help to explain the size differences between them. There was random mating between the E- and the S-morphs of L. saxatilis, which suggests no incipient reproductive isolation between morphs on Swedish rocky shores. This is in agreement with earlier studies of Swedish populations, but is in contrast to the situation found in other geographical areas.  相似文献   

15.
Speciation can involve the evolution of 'cryptic' reproductive isolation that occurs after copulation but before hybrid offspring are produced. Because such cryptic barriers to gene exchange involve post-mating sexual interactions, analyses of their evolution have focused on sexual conflict or traditional sexual selection. Here, we show that ecological divergence between populations of herbivorous walking sticks is integral to the evolution of cryptic reproductive isolation. Low female fitness following between-population mating can reduce gene exchange between populations, thus acting as a form of cryptic isolation. Female walking sticks show reduced oviposition rate and lower lifetime fecundity following between-population versus within-population mating, but only for mating between populations using different host-plant species. Our results indicate that even inherently sexual forms of reproductive isolation can evolve as a by-product of ecological divergence and that post-mating sexual interactions do not necessarily evolve independently of the ecological environment.  相似文献   

16.
We tested the hypothesis that intrademic sexual selection has caused sexual isolation between populations of geographically isolated populations of cactophilic Drosophila mojavensis, and was mediated by epicuticular hydrocarbons (EHCs), contact pheromones in this system. Sexual selection and sexual isolation were estimated using a Baja California and mainland population by comparing the number of mated and unmated males and females in each of four pairwise population mating trials. EHC profiles were significantly different in mated and unmated males in the interdemic (Bajafemale symbol x Mainlandmale symbol and Mainlandfemale symbol x Bajamale symbol), but not the intrademic mating trials. A small number of EHCs was identified that best discriminated among mated and unmated males, mostly alkadienes with 34 and 37 carbons. Females showed population-specific preferences for male EHC profiles. However, EHC profiles between mated and unmated males in the intrademic mating trials were not significantly different, consistent with undetectable sexual selection estimated directly from numbers of copulating pairs vs. unmated adults. Thus, sexual isolation among populations was much stronger than sexual selection within these populations of D. mojavensis.  相似文献   

17.
Sexual selection requires social interactions, particularly between the sexes. When trait expression is influenced by social interactions, such traits are called interacting phenotypes and only recently have the evolutionary consequences of interacting phenotypes been considered. Here we investigated how variation in relative fitness, or the opportunity for sexual selection, affected the evolutionary trajectories of interacting phenotypes. We used experimentally evolved populations of the naturally promiscuous Drosophila pseudoobscura , in which the numbers of potential interactions between the sexes, and therefore relative fitness, were manipulated by altering natural levels of female promiscuity. We considered two different mating interactions between the sexes: mating speed and copulation duration. We investigated the evolutionary trajectories of means and (co)variances ( P ) and also the influence of genetic drift on the evolutionary response of these interactions. Our sexual selection treatments did not affect the means of either mating speed or copulation duration, but they did affect P . We found that the means of both traits differed among replicates within each selection treatment whereas the P s did not. Changes as a consequence of genetic drift were excluded. Our results show that although variable potential strengths of sexual interactions influence the evolution of interacting phenotypes, the influence may be nonlinear.  相似文献   

18.
Postmating sexual selection theory predicts that in allopatry reproductive traits diverge rapidly and that the resulting differentiation in these traits may lead to restrictions to gene flow between populations and, eventually, reproductive isolation. In this paper we explore the potential for this premise in a group of damselflies of the family Calopterygidae, in which postmating sexual mechanisms are especially well understood. Particularly, we tested if in allopatric populations the sperm competition mechanisms and genitalic traits involved in these mechanisms have indeed diverged as sexual selection theory predicts. We did so in two different steps. First, we compared the sperm competition mechanisms of two allopatric populations of Calopteryx haemorrhoidalis (one Italian population studied here and one Spanish population previously studied). Our results indicate that in both populations males are able to displace spermathecal sperm, but the mechanism used for sperm removal between both populations is strikingly different. In the Spanish population males seem to empty the spermathecae by stimulating females, whereas in the Italian population males physically remove sperm from the spermathecae. Both populations also exhibit differences in genital morphometry that explain the use of different mechanisms: the male lateral processes are narrower than the spermathecal ducts in the Italian population, which is the reverse in the Spanish population. The estimated degree of phenotypic differentiation between these populations based on the genitalic traits involved in sperm removal was much greater than the differentiation based on a set of other seven morphological variables, suggesting that strong directional postmating sexual selection is indeed the main evolutionary force behind the reproductive differentiation between the studied populations. In a second step, we examined if a similar pattern in genital morphometry emerge in allopatric populations of this and other three species of the same family (Calopteryx splendens, C. virgo and Hetaerina cruentata). Our results suggest that there is geographic variation in the sperm competition mechanisms in all four studied species. Furthermore, genitalic morphology was significantly divergent between populations within species even when different populations were using the same copulatory mechanism. These results can be explained by probable local coadaptation processes that have given rise to an ability or inability to reach and displace spermathecal sperm in different populations. This set of results provides the first direct evidence of intraspecific evolution of genitalic traits shaped by postmating sexual selection.  相似文献   

19.
Hurt CR  Farzin M  Hedrick PW 《Genetics》2005,171(2):655-662
The timing and pattern of reproductive barrier formation in allopatric populations has received much less attention than the accumulation of reproductive barriers in sympatry. The theory of allopatric speciation suggests that reproductive barriers evolve simply as by-products of overall genetic divergence. However, observations of enhanced premating barriers in allopatric populations suggest that sexual selection driven by intraspecific competition for mates may enhance species-specific signals and accelerate the speciation process. In a previous series of laboratory trials, we examined the strength of premating and postmating barriers in an allopatric species pair of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis. Behavioral observations provided evidence of asymmetrical assortative mating, while reduced brood sizes and male-biased F(1) sex ratios suggest postmating incompatibilities. Here we examine the combined effects of premating and postmating barriers on the genetic makeup of mixed populations, using cytonuclear genotype frequencies of first- and second-generation offspring. Observed genotype frequencies strongly reflect the directional assortative mating observed in behavioral trials, illustrating how isolating barriers that act earlier in the reproductive cycle will have a greater effect on total reproductive isolation and may be more important to speciation than subsequent postmating reproductive barriers.  相似文献   

20.
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号