首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth trajectories are a biological process important to plant and animal breeding, and to evolutionary genetic studies. In this article, we report the detection of quantitative trait loci (QTLs) responsible for growth trajectories in poplars that are used as a model system for the study of forest biology. These QTLs were localized on a genetic linkage map of polymorphic markers using a statistical mapping method incorporating growth-curve models. The effects of the QTLs on growth are described as a function of age, so that age-specific changes in QTL effects can be readily projected throughout the entire growth process. The QTLs identified display increased effects on growth when trees age, yet the timing of QTL activation is earlier for stem height than diameter, which is consistent with the ecological viewpoint of canopy competition. The implications of the results for breeding and silviculture are discussed.  相似文献   

2.
Wu R  Ma CX  Lin M  Wang Z  Casella G 《Biometrics》2004,60(3):729-738
The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.  相似文献   

3.
Wu R  Ma CX  Hou W  Corva P  Medrano JF 《Genetics》2005,171(1):239-249
The high growth (hg) mutation increases body size in mice by 30-50%. Given the complexity of the genetic regulation of animal growth, it is likely that the effect of this major locus is mediated by other quantitative trait loci (QTL) with smaller effects within a web of gene interactions. In this article, we extend our functional mapping model to characterize modifier QTL that interact with the hg locus during ontogenetic growth. Our model is derived within the maximum-likelihood context, incorporated by mathematical aspects of growth laws and implemented with the EM algorithm. In an F2 population founded by a congenic high growth (HG) line and non-HG line, a highly additive effect due to the hg gene was detected on growth trajectories. Three QTL located on chromosomes 2 and X were identified to trigger significant additive and/or dominant effects on the process of growth. The most significant finding made from our model is that these QTL interact with the hg locus to affect the shapes of the growth process. Our model provides a powerful means for understanding the genetic architecture and regulation of growth rate and body size in mammals.  相似文献   

4.
The volumetric growth of tumor cells as a function of time is most often likely to be a complex trait, controlled by the combined influences of multiple genes and environmental influences. Genetic mapping has proven to be a powerful tool for detecting and identifying specific genes affecting complex traits, i.e., quantitative trait loci (QTL), based on polymorphic markers. In this article, we present a novel statistical model for genetic mapping of QTL governing tumor growth trajectories in humans. In principle, this model is a combination of functional mapping proposed to map function-valued traits and linkage disequilibrium mapping designed to provide high resolution mapping of QTL by making use of recombination events created at a historic time. We implement an EM-simplex hybrid algorithm for parameter estimation, in which a closed-form solution for the EM algorithm is derived to estimate the population genetic parameters of QTL including the allele frequencies and the coefficient of linkage disequilibrium, and the simplex algorithm incorporated to estimate the curve parameters describing the dynamic changes of cancer cells for different QTL genotypes. Extensive simulations are performed to investigate the statistical properties of our model. Through a number of hypothesis tests, our model allows for cutting-edge studies aimed to decipher the genetic mechanisms underlying cancer growth, development and differentiation. The implications of our model in gene therapy for cancer research are discussed.  相似文献   

5.
Zhao W  Zhu J  Gallo-Meagher M  Wu R 《Genetics》2004,168(3):1751-1762
The effects of quantitative trait loci (QTL) on phenotypic development may depend on the environment (QTL x environment interaction), other QTL (genetic epistasis), or both. In this article, we present a new statistical model for characterizing specific QTL that display environment-dependent genetic expressions and genotype x environment interactions for developmental trajectories. Our model was derived within the maximum-likelihood-based mixture model framework, incorporated by biologically meaningful growth equations and environment-dependent genetic effects of QTL, and implemented with the EM algorithm. With this model, we can characterize the dynamic patterns of genetic effects of QTL governing growth curves and estimate the global effect of the underlying QTL during the course of growth and development. In a real example with rice, our model has successfully detected several QTL that produce differences in their genetic expression between two contrasting environments. These detected QTL cause significant genotype x environment interactions for some fundamental aspects of growth trajectories. The model provides the basis for deciphering the genetic architecture of trait expression adjusted to different biotic and abiotic environments and genetic relationships for growth rates and the timing of life-history events for any organism.  相似文献   

6.
Ma CX  Casella G  Wu R 《Genetics》2002,161(4):1751-1762
Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot be detected using current methods. The advantages of functional mapping are also discussed.  相似文献   

7.
MOTIVATION: Functional mapping has proven to be powerful for characterizing quantitative trait loci (QTL) that control complex dynamic traits. More recently, functional mapping has been extended to identify the host QTL responsible for HIV dynamics by incorporating a parametric bi-exponential function for earlier stages of viral load trajectories. However, existing functional mapping cannot be used to map long-term HIV dynamics because no mathematical functions are available for later stages of HIV dynamic changes. RESULTS: We derived a statistical model for functional mapping of dynamic QTL through characterizing HIV load trajectories during a long-term period semiparametrically. The new model was constructed within the maximum likelihood framework and implemented with the EM-simplex algorithm. It allows for the test of differences in the genetic control of short- and long-term HIV dynamics and the characterization of the effects of viral-host genome interaction. Extensive simulation studies have been performed to test the statistical behavior of this model. The new model will provide an important tool for genetic and genomic studies of human complex diseases like HIV/AIDS and their pathological progression. AVAILABILITY: Available on request from the corresponding author.  相似文献   

8.
Dominant markers have been commonly used in mapping quantitative trait loci (QTLs) in outcrossing species, in which not much prior genome information is available. But the dominant nature of these markers may lead to reduced QTL mapping precision and power. A new statistical method is proposed to incorporate growth laws into a QTL mapping framework, under which the use of the efficiency of dominant markers can be increased. This new method can be used to identify specific QTLs affecting differentiation in growth trajectories, and further estimate the timing of a QTL to turn on, or turn off, affecting growth during the entire ontogeny of a species. Using this method based on dominant markers we have successfully mapped a QTL for stem height growth trajectories to a linkage group in a forest tree. The implications of this method for the understanding of the genetic architecture of growth using dominant markers are discussed.Communicated by F. Salamini  相似文献   

9.
T Würschum  T Kraft 《Heredity》2015,114(3):281-290
Association mapping has become a widely applied genomic approach to dissect the genetic architecture of complex traits. A major issue for association mapping is the need to control for the confounding effects of population structure, which is commonly done by mixed models incorporating kinship information. In this case study, we employed experimental data from a large sugar beet population to evaluate multi-locus models for association mapping. As in linkage mapping, markers are selected as cofactors to control for population structure and genetic background variation. We compared different biometric models with regard to important quantitative trait locus (QTL) mapping parameters like the false-positive rate, the QTL detection power and the predictive power for the proportion of explained genotypic variance. Employing different approaches we show that the multi-locus model, that is, incorporating cofactors, outperforms the other models, including the mixed model used as a reference model. Thus, multi-locus models are an attractive alternative for association mapping to efficiently detect QTL for knowledge-based breeding.  相似文献   

10.
Interval Mapping of Multiple Quantitative Trait Loci   总被引:60,自引:7,他引:53       下载免费PDF全文
R. C. Jansen 《Genetics》1993,135(1):205-211
The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple QTL models instead of the single QTL models (and no QTL models) used in interval mapping. However, the computational work involved with multiple QTL models is considerable when the number of QTLs is large. In this paper it is proposed to combine multiple linear regression methods with conventional interval mapping. This is achieved by fitting one QTL at a time in a given interval and simultaneously using (part of) the markers as cofactors to eliminate the effects of additional QTLs. It is shown that the proposed method combines the easy computation of the single QTL interval mapping method with much of the efficiency and accuracy of multiple QTL models.  相似文献   

11.
A mechanistic model for genetic machinery of ontogenetic growth   总被引:3,自引:0,他引:3  
Wu R  Wang Z  Zhao W  Cheverud JM 《Genetics》2004,168(4):2383-2394
Two different genetic mechanisms can be proposed to explain variation in growth trajectories. The allelic sensitivity hypothesis states that growth trajectory is controlled by the time-dependent expression of alleles at the deterministic quantitative trait loci (dQTL) formed during embryogenesis. The gene regulation hypothesis states that the differentiation in growth process is due to the opportunistic quantitative trait loci (oQTL) through their mediation with new developmental signals. These two hypotheses of genetic control have been elucidated in the literature. Here, we propose a new statistical model for discerning these two mechanisms in the context of growth trajectories by integrating growth laws within a QTL-mapping framework. This model is developed within the maximum-likelihood context, implemented with a grid approach for estimating the genomic positions of the deterministic and opportunistic QTL and the simplex algorithm for estimating the growth curve parameters of the genotypes at these QTL and the parameters modeling the residual (co)variance matrix. Our model allows for extensive hypothesis tests for the genetic control of growth processes and developmental events by these two types of QTL. The application of this new model to an F(2) progeny in mice leads to the detection of deterministic and opportunistic QTL on chromosome 1 for mouse body mass growth. The estimates of QTL positions and effects from our model are broadly in agreement with those by traditional interval-mapping approaches. The implications of this model for biological and biomedical research are discussed.  相似文献   

12.
Wu R  Ma CX  Lin M  Casella G 《Genetics》2004,166(3):1541-1551
The genetic architecture of growth traits plays a central role in shaping the growth, development, and evolution of organisms. While a limited number of models have been devised to estimate genetic effects on complex phenotypes, no model has been available to examine how gene actions and interactions alter the ontogenetic development of an organism and transform the altered ontogeny into descendants. In this article, we present a novel statistical model for mapping quantitative trait loci (QTL) determining the developmental process of complex traits. Our model is constructed within the traditional maximum-likelihood framework implemented with the EM algorithm. We employ biologically meaningful growth curve equations to model time-specific expected genetic values and the AR(1) model to structure the residual variance-covariance matrix among different time points. Because of a reduced number of parameters being estimated and the incorporation of biological principles, the new model displays increased statistical power to detect QTL exerting an effect on the shape of ontogenetic growth and development. The model allows for the tests of a number of biological hypotheses regarding the role of epistasis in determining biological growth, form, and shape and for the resolution of developmental problems at the interface with evolution. Using our newly developed model, we have successfully detected significant additive x additive epistatic effects on stem height growth trajectories in a forest tree.  相似文献   

13.
An interval quantitative trait locus (QTL) mapping method for complex polygenic diseases (as binary traits) showing QTL by environment interactions (QEI) was developed for outbred populations on a within-family basis. The main objectives, within the above context, were to investigate selection of genetic models and to compare liability or generalized interval mapping (GIM) and linear regression interval mapping (RIM) methods. Two different genetic models were used: one with main QTL and QEI effects (QEI model) and the other with only a main QTL effect (QTL model). Over 30 types of binary disease data as well as six types of continuous data were simulated and analysed by RIM and GIM. Using table values for significance testing, results show that RIM had an increased false detection rate (FDR) for testing interactions which was attributable to scale effects on the binary scale. GIM did not suffer from a high FDR for testing interactions. The use of empirical thresholds, which effectively means higher thresholds for RIM for testing interactions, could repair this increased FDR for RIM, but such empirical thresholds would have to be derived for each case because the amount of FDR depends on the incidence on the binary scale. RIM still suffered from higher biases (15-100% over- or under-estimation of true values) and high standard errors in QTL variance and location estimates than GIM for QEI models. Hence GIM is recommended for disease QTL mapping with QEI. In the presence of QEI, the model including QEI has more power (20-80% increase) to detect the QTL when the average QTL effect is small (in a situation where the model with a main QTL only is not too powerful). Top-down model selection is proposed in which a full test for QEI is conducted first and then the model is subsequently simplified. Methods and results will be applicable to human, plant and animal QTL mapping experiments.  相似文献   

14.
Yang R  Xu S 《Genetics》2007,176(2):1169-1185
Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL.  相似文献   

15.
Zimmer D  Mayer M  Reinsch N 《Genetics》2011,187(1):261-270
Methodology for mapping quantitative trait loci (QTL) has focused primarily on treating the QTL as a fixed effect. These methods differ from the usual models of genetic variation that treat genetic effects as random. Computationally expensive methods that allow QTL to be treated as random have been explicitly developed for additive genetic and dominance effects. By extending these methods with a variance component method (VCM), multiple QTL can be mapped. We focused on an F(2) crossbred population derived from inbred lines and estimated effects for each individual and their corresponding marker-derived genetic covariances. We present extensions to pairwise epistatic effects, which are computationally intensive because a great many individual effects must be estimated. But by replacing individual genetic effects with average genetic effects for each marker class, genetic covariances are approximated. This substantially reduces the computational burden by reducing the dimensions of covariance matrices of genetic effects, resulting in a remarkable gain in the speed of estimating the variance components and evaluating the residual log-likelihood. Preliminary results from simulations indicate competitiveness of the reduced model with multiple-interval mapping, regression interval mapping, and VCM with individual genetic effects in its estimated QTL positions and experimental power.  相似文献   

16.
Strategies for genetic mapping of categorical traits   总被引:3,自引:0,他引:3  
Shaoqi Rao  Xia Li 《Genetica》2000,109(3):183-197
The search for efficient and powerful statistical methods and optimal mapping strategies for categorical traits under various experimental designs continues to be one of the main tasks in genetic mapping studies. Methodologies for genetic mapping of categorical traits can generally be classified into two groups, linear and non-linear models. We develop a method based on a threshold model, termed mixture threshold model to handle ordinal (or binary) data from multiple families. Monte Carlo simulations are done to compare its statistical efficiencies and properties of the proposed non-linear model with a linear model for genetic mapping of categorical traits using multiple families. The mixture threshold model has notably higher statistical power than linear models. There may be an optimal sampling strategy (family size vs number of families) in which genetic mapping reaches its maximal power and minimal estimation errors. A single large-sibship family does not necessarily produce the maximal power for detection of quantitative trait loci (QTL) due to genetic sampling of QTL alleles. The QTL allelic model has a marked impact on efficiency of genetic mapping of categorical traits in terms of statistical power and QTL parameter estimation. Compared with a fixed number of QTL alleles (two or four), the model with an infinite number of QTL alleles and normally distributed allelic effects results in loss of statistical power. The results imply that inbred designs (e.g. F2 or four-way crosses) with a few QTL alleles segregating or reducing number of QTL alleles (e.g. by selection) in outbred populations are desirable in genetic mapping of categorical traits using data from multiple families. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution.  相似文献   

18.
Modeling epistasis of quantitative trait loci using Cockerham's model   总被引:10,自引:0,他引:10  
Kao CH  Zeng ZB 《Genetics》2002,160(3):1243-1261
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.  相似文献   

19.
Along with the development and integration of molecular genetics and quantitative genetics, many quantitative trait locus (QTL) mapping studies have been conducted using different mapping populations in various crop species. Existing QTLs can be used for marker-assisted breeding and map-based cloning, whereas the false-positive QTLs are no use. The purpose of this study is to evaluate the suitability of different mapping procedures for data from different genetic models. In this study, four types of recombinant inbred lines (RILs) with different genetic models, viz. additive QTLs (Model I), additive and epistatic QTLs (Model II), additive QTLs and QTL × environment interaction (Model III), additive, epistatic QTLs and QTL × environment interaction (Model IV), were simulated by computer. Six types of QTL mapping procedures, viz. CIM, MIMF, MIMR, ICIM, MQM and NWIM, on four kinds of QTL mapping software, viz. WinQTL Cartographer Version 2.5, IciMapping Version 2.0, MapQTL Version 5.0 and QTLnetwork Version 2.0, were used for screening QTLs of the simulated RILs. The results showed that different mapping procedures have different suitability for different genetic models. CIM and MQM can only screen Model I data. MIMR, MIMF and ICIM can only screen Model I and Model II data. NWIM can screen all four models’ data. It can be concluded that different genetic models’ data have different most suitable mapping procedures. In practical experiments where the genetic model of the data is unknown, a multiple model mapping strategy should be used, that is a full model scanning with complex model procedure followed by verification with other procedures corresponding to the scanning results.  相似文献   

20.
Mathematically-derived traits from two or more component traits, either by addition, subtraction, multiplication, or division, have been frequently used in genetics and breeding. When used in quantitative trait locus (QTL) mapping, derived traits sometimes show discrepancy with QTL identified for the component traits. We used three QTL distributions and three genetic effects models, and an actual maize mapping population, to investigate the efficiency of using derived traits in QTL mapping, and to understand the genetic and biological basis of derived-only QTL, i.e., QTL identified for a derived trait but not for any component trait. Results indicated that the detection power of the four putative QTL was consistently greater than 90% for component traits in simulated populations, each consisting of 200 recombinant inbred lines. Lower detection power and higher false discovery rate (FDR) were observed when derived traits were used. In an actual maize population, simulations were designed based on the observed QTL distributions and effects. When derived traits were used, QTL detected for both component and derived traits had comparable power, but those detected for component traits but not for derived traits had low detection power. The FDR from subtraction and division in the maize population were higher than the FDR from addition and multiplication. The use of derived traits increased the gene number, caused higher-order gene interactions than observed in component traits, and possibly complicated the linkage relationship between QTL as well. The increased complexity of the genetic architecture with derived traits may be responsible for the reduced detection power and the increased FDR. Derived-only QTL identified in practical genetic populations can be explained either as minor QTL that are not significant in QTL mapping of component traits, or as false positives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号