首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender.  相似文献   

2.
External quality control programmes carried out by central laboratories have been long established in human andrology with the aim of enhancing the accuracy and reproducibility of semen assessment. Compared to human, demands on boar semen assessment in AI stations are more complex, with the need both to identify boars with poor ejaculate quality and to monitor individual boar differences for semen storage. Additionally, appropriate assessment serves as a control instrument to ensure the security and efficiency of semen processing. Despite current limitations regarding the ability of sperm assays to estimate the potential fertility of males, it is evident that boar fertility is related to certain conventional semen tests, e.g. sperm morphology. In central studies carried out on stored semen from 11 AI stations, flow cytometric assessment of plasma and acrosome membrane integrity proved to be more sensitive in detecting sperm damage associated with ageing and temperature stress as compared to light microscopy. Membrane integrity of stored semen differed between AI stations indicating significant influences of semen processing on sperm quality. Thus external control of semen quality in reference laboratories may be useful to monitor the efficiency of internal semen quality control in individual AI stations, to identify males with lower semen quality and/or poor response to semen storage, and to verify the precision of sperm counting. The possibility that central laboratories with sufficient resources may be able to identify functionally different responding sperm subpopulations for better estimation of fertility is discussed. Ideally, external quality control schemes for AI stations would comprise application of validated tests with high relevance for fertility (including bacterial status), analysis of semen processing on the AI station, and training courses for laboratory personnel.  相似文献   

3.
An overview of the present status of the use of artificial insemination (AI) in South American camelids and wild equids is offered. Technical aspects of semen collection, dilution and cryopreservation have limited the development and use of AI in camelid and equid species. To-date, efficiency is low but progress has been made and viable offspring have been produced through the use of AI in domestic South American camelids using both fresh and frozen semen. The origin, composition, and function of the viscous component of camelid seminal plasma remain a mystery and an obvious area for future research. A better understanding of the normal constituents of seminal plasma will enable the rational design of semen extenders suitable for camelids. Post-thaw sperm viability is very low, and studies are needed to address questions of optimal freezing and thawing procedures as well as the insemination dose. The basis for differences in reported pregnancy rates with sexed and frozen semen in domestic equids, and the ultimate success of AI in wild equids will require continued research into the "stallion effect", extenders and cryoprotectants, optimal volume and number of spermatozoa, temperatures during handling, processing an transport, and insemination techniques. In both camelids and equids, research on domestic species under controlled conditions provides and excellent opportunity to develop effective semen handling techniques for application in wild and endangered species of the respective families.  相似文献   

4.
Storage of buffalo (Bubalus bubalis) semen   总被引:1,自引:0,他引:1  
Characteristics of buffalo semen, diluents used for liquid storage, aspects involved in freezing and thawing of semen are reviewed, and fertility results after artificial insemination (AI) with frozen-thawed semen are given.  相似文献   

5.
Storage of ram semen   总被引:1,自引:0,他引:1  
Storage of ram semen in liquid and frozen state, the diluents used for both methods, processing, cooling, freezing and thawing of semen are reviewed. Factors influencing the fertility of stored semen and methods used for improvement are discussed, and fertility results of long-term frozen stored ram semen are also given.  相似文献   

6.
The article reviews methods used for in vitro evaluation of sperm, with particular emphasis on frozen-thawed stallion sperm. The techniques, limitations of the methods and correlations with fertility results are discussed. Very few studies have tried to find correlation between fertility of frozen stallion semen and laboratory tests. It is difficult and expensive to inseminate an adequate number of mares to achieve statistically significant differences. Significant, but low correlations have been demonstrated between the foaling rate and subjective motility of sperm incubated for 2 h and 4 h at 37°C and hypoosmotic swelling test after 0 and 3 h of incubation. Significant correlations have been reported between the pregnancy rate and viability of propidium iodide-stained sperm assessed by flow cytometry as well as for glass wool and Sephadex filtration tests. No correlations have been detected between fertility and motility immediately after thawing. In spite of that, motility estimation by light microscope is the most commonly used method to evaluate frozen-thawed stallion sperm. Computer assisted automatic sperm analyzers have replaced light microscopy in research projects, but so far nobody has been able to demonstrate a correlation between fertility of frozen stallion semen and any of the motility parameters obtained by these instruments.  相似文献   

7.
New aspects of boar semen freezing strategies   总被引:1,自引:0,他引:1  
Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred. There is ongoing research to improve sperm survival after thawing, to limit the damage occurring to spermatozoa during freezing, and to further minimize the number of spermatozoa needed to establish a pregnancy. Boar spermatozoa are exposed to lipid peroxidation during freezing and thawing, which causes damage to the sperm membranes and impairs energy metabolism. The addition of antioxidants or chelating agents (e.g. catalase, vitamin E, glutathione, butylated hydroxytoluene or superoxide dismutase) to the still standard egg-yolk based cooling and freezing media for boar semen, effectively prevented this damage. In general, final glycerol concentrations of 2-3% in the freezing media, cooling rates of -30 to -50 degrees C/min, and thawing rates of 1200-1800 degrees C/min resulted in the best sperm survival. However, cooling and thawing rates individually optimized for sub-standard freezing boars have substantially improved their sperm quality after cryopreservation. With deep intrauterine insemination, the sperm dose has been decreased from 6 to 1x10(9) spermatozoa without compromising farrowing rate or litter size. Minimizing insemination-to-ovulation intervals, based either on estimated or determined ovulation, have also improved the fertility after AI with cryopreserved boar semen. With this combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved, facilitating the use of cryopreserved boar semen in routine AI programs.  相似文献   

8.
9.
Centrifugation of stallion semen and its storage in large volume straws.   总被引:1,自引:0,他引:1  
In a study of different methods of handling stallion semen for deep freezing, ejaculates were divided into 3 portions, the first of which was diluted 1:2 with lactose--egg yolk--glycerol diluent and frozen in pellet form. The second aliquot was centrifuged without any diluent and the third portion was initially diluted with an experimental diluent (Merck) and then centrifuged for 5 min at 1000 g. The second and third portions were frozen in large volume straws each of which contained one whole insemination dose of 1 or 2 X 10(8) progressively motile spermatozoa. The addition of a diluent to the semen before centrifugation and freezing (portion 3) resulted in an increase in sperm motility after thawing. Motility was further increased by the use of a recently developed diluent after centrifugation and before freezing. In one fertility trial, 12 of 19 mares (63%) conceived following a single insemination of frozen semen during one oestrous period.  相似文献   

10.
The present study attempted to select the subpopulation of stallion spermatozoa that best survived a conventional freezing and thawing procedure, using centrifugation of post-thawed semen samples through a single layer of a glycidoxypropyltrimethoxysilane-coated silica colloid with a species-specific formulation (Androcoll-E). Sperm motility, sperm chromatin structure, membrane integrity and mitochondrial membrane potential were studied in filtered and non-filtered spermatozoa. Single-layer centrifugation (SLC) using Androcoll-E significantly improved all the sperm parameters studied, implying SLC may be a simple approach to improve the quality of frozen-thawed (FT) spermatozoa for AI.  相似文献   

11.
Any event that makes semen collection or mating impossible, such as death, castration, or injury, may terminate a stallion’s breeding career. Fortunately, stallion sperm which are capable of fertilization can be harvested from the epididymis, and frozen for future use. However, the fertility of frozen–thawed epididymal sperm has been found to be lower than that of ejaculated sperm. Therefore, this study aimed to optimize the fertility of frozen epididymal stallion sperm by investigating the effects of different cryoprotectants and freezing protocols on sperm quality. Dimethylformamide was tested alone or combination with pasteurized egg yolk as substitute of fresh egg yolk. In addition, the effect of the pre-freeze stabilization on sperm quality was analyzed. Heterospermic samples obtained from stallion epididymis were collected and cryopreserved in lactose–egg-yolk extender or in the same extender with varying content of cryoprotectant and content of egg yolk, stabilized and no-stabilized. Sperm motility, viability, hypoosmotic swelling test (HOST) and acrosome integrity were evaluated post-thawing. No improvement was observed on the replacement of fresh yolk by pasteurized egg yolk, whereas the results suggest that dimethylformamide is a cryoprotectant suitable for cryopreservation of equine epididymal semen, even better than glycerol. In addition, we found that the stabilization before freezing on epididymal stallion sperm, can improve sperm quality parameters.  相似文献   

12.
Theoretical aspects of canine semen cryopreservation   总被引:1,自引:0,他引:1  
Eilts BE 《Theriogenology》2005,64(3):692-697
Changes in canine sperm cells during freezing and thawing can cause damage to the cells resulting in cell death. No standardized freezing or thawing method appears to be ideal for all dogs and all ejaculates, because intrinsic variations in properties such as osmotic sensitivity between sperm cells from different dogs and ejaculates makes the cellular response to cryopreservation unpredictable according to the normal physics of cryobiology. Research in canine semen cryopreservation is difficult because the low ejaculate volume makes multiple comparisons from a single ejaculate difficult. True fertility data is also very limited on cryopreserved canine ejaculates. Despite this, the cottage industry that has evolved to cryopreserve dog sperm has been very successful using empirically derived methods that accommodate most ejaculates. Therefore, the practitioner must follow the recommendations supplied by the freezing center to achieve the best potential results.  相似文献   

13.
Sieme H  Katila T  Klug E 《Theriogenology》2004,61(4):769-784
This study analyzed effects of different methods and intervals of semen collection on the quantity and quality of fresh, cool-stored, and frozen-thawed sperm and fertility of AI stallions. In Experiment 1, ejaculates were obtained from six stallions (72 ejaculates per stallion) using fractionated versus non-fractionated semen collection techniques. Initial sperm quality of the first three jets of the ejaculate was not different from that of total ejaculates. Centrifugation of sperm-rich fractions before freezing improved post-thaw motility and sperm membrane integrity when compared to non-centrifuged sperm-rich fractions or non-fractionated centrifuged ejaculates (P<0.05). In Experiment 2, semen from four stallions (60-70 ejaculates per stallion) was collected either once daily or two times 1h apart every 48 h. The first ejaculates of double collections had significantly higher sperm concentrations, percentages of progressively motile sperm (PMS) after storage for 24h at 5 degrees C and lower percentages of midpiece alterations than single daily ejaculates. Semen collected once daily showed significantly lower values of live sperm after freezing and thawing than the first ejaculate of two ejaculates collected 1h apart every 48 h. In Experiment 3, semen was collected from 36 stallions (> or =12 ejaculates per stallion) during the non-breeding season and the time to ejaculation and the number of mounts was recorded. When time to ejaculation and the number of mounts increased, volume and total sperm count (TSC) also increased (P<0.05), whereas a decrease was observed in sperm concentration, percentage of PMS after storage for 24 h at 5 degrees C, percentage of membrane-intact sperm in fresh semen (P<0.05) as well as motility and percentage of membrane-intact sperm of frozen-thawed sperm (P<0.05). In Experiment 4, AI data of 71 stallions were retrospectively analyzed for the effect of number of mounts per ejaculation and frequency, time interval of semen collections on pregnancy, and foaling rates (FRs) of mares. Semen volume increased, but sperm concentration and percentage of PMS after 24-h cool-storage decreased with increasing number of mounts on the phantom (P<0.05). A statistically significant inter-relationship was demonstrated between frequency and interval of semen collection and FR. Mares inseminated with stallions from which semen was collected frequently (> or =1 on an average per day) showed significantly higher FRs than mares inseminated with semen from stallions with a daily collection frequency of 0.5-1 or <0.5. FR of mares inseminated with stallions having 0.5-1 days between semen collections was significantly better than FR of mares that were inseminated with stallions having semen collection intervals of 1-1.5 days or >2.5 days.  相似文献   

14.
Field fertility with exported boar semen frozen in the new flatpack container   总被引:10,自引:0,他引:10  
The present study tested the field fertility of frozen-thawed (FT) Swedish boar semen packaged in flat plastic containers (FlatPacks) and exported for artificial insemination (AI) to overseas nucleus herds. Semen from 47 Swedish boars of Landrace (L), Yorkshire (Y), and Hampshire (H) breeds was frozen using a lactose-egg yolk-based extender with 3% glycerol and 10(9) spermatozoa/ml in 5 ml FlatPacks. For all breeds, FT sperm membrane intactness averaged 60%, while mean FT sperm motility ranged from 49 to 53%. A total of 308 litters resulted from 421 overseas inseminations with FT semen, with a mean farrowing rate (FR) of 73% and 10.7 mean number total piglets born. In a within-sow analysis for the purebred L and Y breedings, the FR and litter size of FT semen were compared with natural matings (NM) and on-farm AI with liquid semen (NW/AI breedings) at the same farms. Farrowing rate was 72.3 and 78.8% (P = 0.23), total piglets 11.3 and 11.6 (P = 0.44), and live piglets 10.1 and 10.2 (P = 0.77), for the FT semen and NM/AI breedings, respectively. The present results suggest that this freezing protocol and FlatPack container maintains high sperm viability post-thaw. Further the fertility levels when inseminated at overseas nucleus herds seem to be similar to those achieved with (NM/AI breedings) at the same farms. This freezing method may be a reliable alternative for the freezing/thawing of boar semen under commercial AI conditions.  相似文献   

15.
We review recent developments in the technology of freezing stallion sperm, paying special attention to the molecular lesions that spermatozoa suffer during freezing and thawing, such as osmotic stress, oxidative damage, and apoptotic changes. We also discuss the applicability of colloidal centrifugation in stallion sperm cryobiology. Increased knowledge about the molecular injuries that occur during cryopreservation may lead to improved protective techniques and thus to further improvements in fertility in the current decade.  相似文献   

16.
We investigated fluorometry to study sperm viability and flow cytometry to study sperm chromatin structure. We also assessed sperm quality after thawing relative to field fertility after AI as shown by 56-day non-return rates (56-d NRR) Frozen-thawed semen samples were obtained from 20 Swedish Red and White bulls (1 to 3 semen batches/bull) and the fertility data were based on 6,369 AIs. Fluorometry enabled simultaneous detection of sperm viability and concentration in Hoechst 33258-stained semen samples. Sperm chromatin structure assay (SCSA) evaluated denaturability of sperm nuclear DNA in situ after acid treatment. The intensity of fluorescence in non-permeabilized samples was negatively (r = -0.60, P < 0.001) correlated with microscopically-assessed sperm viability, and the fluorescence of permeabilized semen samples significantly (r = 0.67, P < 0.001) correlated with sperm concentration as assessed by hemocytometry. From the fluorescence output, the calculated percentage of damaged cells was negatively (r = -0.71, P < 0.001) correlated with the number of live cells derived from the microscopic assessment of sperm viability and concentration. This variable was significantly correlated with fertility results both at batch (r = -0.39, P < 0.05), and bull (r = -0.57, P < 0.01) levels. The SCSA variables SDalphat and COMPalphat were significantly (r = -0.59-0.64, P < 0.001) correlated with sperm viability variables after thawing but only the COMPalphat correlated significantly (r = -0.53, P < 0.05) with fertility results and solely at the bull level. The results indicate that fluorometric assessment is in good agreement with other practiced procedures and can be performed with sufficient accuracy. The SCSA may be a valuable complement for routinely practiced microscopic evaluation of sperm morphology of AI bull semen  相似文献   

17.
This study was done to determine the effects of processing techniques on the quality of semen from Dutch AI-bucks with the view on improving pregnancy rates after artificial insemination (AI) with liquid or frozen-thawed semen. Motility of spermatozoa was estimated under a microscope whereas the percentage live spermatozoa and the percentage live spermatozoa with intact acrosomes were determined by means of flow cytometry. Aspects of semen processing that were investigated are storage temperature of liquid semen (i), the effect of glycerol on liquid-stored semen (ii), removal of seminal plasma (iii) and type of extender (iv). The correlation between semen quality and fertility rates in inseminated does was also investigated. The percentage motile spermatozoa in semen stored in liquid form for 72 h progressively declined over time, irrespective of whether storage occurred at 4 or 18 degrees C. The percentage motile spermatozoa in semen stored at 18 degrees C was similar to that in semen stored at 4 degrees C if stored for 24 h but lower if stored for 48 h. Goats differ in the sensitivity of their spermatozoa to the deleterious effects of glycerol. Neither the removal of seminal plasma nor the type of extender had any effect on semen quality before freezing but semen frozen in a Tris-citric acid-glucose (TCG) buffer with egg yolk without removal of the seminal plasma had better quality after thawing than semen frozen in another diluent or after removal of seminal plasma. Remarkably no significant correlation between fertility and membrane integrity of spermatozoa could be found. Thus, although integrity assays for spermatozoa are useful to asses resistance to semen handling, the validity of these assays for predicting fertility is questioned.  相似文献   

18.
The aim of the present study was to evaluate the effects of supplementation of semen extender with various non-enzymatic antioxidants on the quality of cooled or cryopreserved Arabian stallion spermatozoa. Semen collected from four pure Arabian stallions was centrifuged at 600g for 15 min. Spermatozoa were then diluted in INRA-82 extender supplemented with bovine serum albumin (BSA; 0, 10, 15 and 20 mg/mL) or trehalose (0, 75, 100 and 150 mM) or zinc sulphate (0, 100, 150 and 200 μM). The diluted semen was then either cooled at 5 °C or cryopreserved in 0.5–ml plastic straws. After cooling or thawing, sperm motility, viability, sperm abnormalities, viability index, and plasma membrane integrity were evaluated. The results showed that supplementation of semen extender with 150 mM trehalose or with 200 μM zinc sulphate significantly (P < 0.05) improved motility, viability, sperm membrane integrity and acrosome status in Arabian stallion spermatozoa after cooling or after freezing and thawing compared with controls (non-supplemented media) or with those supplemented with other concentrations of trehalose or zinc sulphate. Supplementation of semen extender with BSA did not improve sperm motility or cryosurvival of Arabian stallion spermatozoa after cooling or after freezing and thawing. In conclusion, supplementation of semen extender with non-enzymatic antioxidants (trehalose or zinc sulphate) improved the quality of chilled and frozen/thawed Arabian stallion spermatozoa. The most beneficial effects occur when semen diluent was supplemented with 150 mM trehalose or 200 μM zinc sulphate.  相似文献   

19.
We compared the fertility of thawed ram semen, frozen according to different prefreezing semen handling protocols and previously well-defined in vitro, after cervical artificial insemination (AI) during natural estrus in Corriedale sheep. Following primary extension 1 + 1, we adjusted the final sperm concentration before packaging (200 x 10(6)/straw) either by centrifugation, in order to reconcentrate the extended semen (Protocol 1: P1), or without centrifugation, by adjusting the final sperm number by stepwise extension (Protocol 2: P2). We evaluated sperm motility (assessed both subjectively and with a computer-assisted sperm analysis instrument [CASA]), membrane integrity (SYBR-14/PI), and capacitation status (chlortetracycline [CTC]) in vitro in three pooled straws of frozen-thawed semen. Three hundred Corriedale ewes, having shown spontaneous estrus during the breeding season (i.e., April, in the southern hemisphere) under extensive management conditions in Uruguay, were cervically inseminated with thawed semen from the same freezing operations as studied in vitro. The semen evaluation in vitro yielded higher percentages (P < 0.05) of damaged spermatozoa in the samples where sperm numbers were adjusted by extension before freezing (P2), compared with when adjustment was done by centrifugation (P1). However, due to the higher sperm concentration finally achieved by P2, the calculated total number of viable spermatozoa was almost equal in the two AI doses. We observed no differences in fertility between P1 and P2 for either nonreturn rates (NRRs) 21 (30.8 vs. 29.7%) and 36 (28.5 vs. 27.8%) days after AI or lambing rate (21.9 vs. 21.4%), respectively. Fertility did not differ significantly between the two different procedures of adjusting sperm numbers prior to freezing. This may indicate that the simplified protocol with adjusted extension of the semen, resulting in higher numbers of viable spermatozoa, should be the procedure of choice when freezing ram semen under field conditions. Further studies aimed at improving the modified protocol need to be performed.  相似文献   

20.
Since the production of the first live offspring from sex-sorted spermatozoa in 1989, there have been many developments in the fluorescence-activated cell separation (FACS) procedures to preselect X- and Y-chromosome bearing spermatozoa prior to insemination. During this time, FACS technology has been applied to a range of species and has resulted in offspring from rabbits, cattle, sheep, elk and horses. In horses, satisfactory fertility rates have been achieved after hysteroscopic insemination of 20 x 10(6) fresh or stored, sex-sorted spermatozoa. However, many of the sperm processing protocols are still based on the original protocol and components of these procedures may not necessarily be suitable for the stallion. This review examines the details of FACS protocols that have resulted in the production of live offspring and makes comparisons with the published stallion protocols in an attempt to determine how best to improve the fertility of sorted, frozen-thawed stallion spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号