首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EGTA-induced depletion of Ca2+ ions from the culture medium of Madin-Darby bovine kidney epithelial cells results in rapid splitting of adherens-type junctions and the detachment of the vinculin- and actin-containing filament bundle from the cytoplasmic faces of the plasma membrane of the zonula adhaerens. This process was monitored by phase-contrast microscopy, combined with electron microscopy and immunofluorescent localization of the two proteins. It is shown that shortly after extracellular free Ca2+ concentration is lowered to the micromolar range, the actin-containing, junction-associated belt of microfilaments, together with the vinculin-rich junctional plaque material, is irreversibly detached as one structural unit from the plasma membrane, contracts, and is displaced towards the perinuclear cytoplasm where it gradually disintegrates. Other actin- and vinculin-containing structures present in the same cells, notably the focal contacts at the substratum, are not similarly affected by the Ca2+ depletion and retain both the adhesion to the external surface and the association with the plaque and microfilament components. Electron microscopic examination has shown that the membrane domain of the zonulae adhaerentes, unlike that of desmosomes, is not endocytosed after Ca2+ removal and that the displaced actin- and vinculin-containing plaque and filament belt are not associated with a particular membrane. It is further shown that upon restoration of normal Ca2+ levels in the culture medium, new intercellular contacts are established gradually by accretion of both vinculin and actin into new belt-like plaque- and microfilament-containing structures.  相似文献   

2.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

3.
Studies on membrane fusion. III. The role of calcium-induced phase changes.   总被引:12,自引:0,他引:12  
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture electron microscopy. These data are discussed in relation to information concerning Ca2+ binding, charge neutralization, molecular packing, vesicle aggregation, phase transitions, phase separations and vesicle fusion. The results indicate that at Ca2+ concentrations of 1.0-2.0 mM, a highly cooperative phenomenon occurs which results in increased vesicle permeability, aggregation and fusion of the vesicles. Under these conditions the hydrocarbon chains of the lipid bilayers undergo a phase change from a fluid to a crystalline state. The aggregation of vesicles that is observed during fusion is not sufficient range of 2.0-5.0 mM induces aggregation of phosphatidylserine vesicles but no significant fusion nor a phase change. From the effect of variations in pH, temperature, Ca2+ and Mg2+ concentration on the fusion of vesicles, it is concluded that the key event leading to vesicle membrane fusion is the isothermic phase change induced by the bivalent metals. It is proposed that this phase change induces a transient destabilization of the bilayer membranes that become susceptible to fusion at domain boundaries.  相似文献   

4.
Giardia is an intestinal parasite that undergoes adaptation for survival outside the host. It secretes an extracellular cyst wall using a poorly understood process. An encystation-specific secretory vesicle (ESV) was previously described containing cyst wall proteins. The process of release of these vesicles has been suggested to occur after fragmentation of large ESV in small secretory vesicles, followed by exocytosis, but it was not demonstrated. The release of the ESV was studied by transmission electron microscopy. It was observed: (1) the moment of vesicle release; (2) that a large vesicle is exocytosed and does not fragment into small vesicles; (3) membrane fusion is distinct from traditional exocytosis since it is incomplete; (4) the occurrence of membrane fragmentation and that those membranes reseal to form ghosts; (5) these membrane ghosts may be endocytosed, adhered to flagellar surface or/and form empty vesicles in the extracellular medium.  相似文献   

5.
It was found that the initial rate of passive KC1-stimulated Ca2+ influx into sarcoplasmic reticulum (SR) vesicles follows the saturation kinetics at Ca2+ concentrations of 8-10 mM. The inhibitory effect of Ca2+ channel blockers (La3+, Mn2+, Co2+, Cd2+, Mg2+) on passive Ca2+ influx into SR vesicles is competitive with respect to Ca2+. These blockers also inhibit the initial fast phase of Ca2+ efflux from Ca2+-loaded SR vesicles. Verapamil (0.1-0.5 mM) added to the incubation mixture has no effect on passive Ca2+ fluxes across the SR vesicle membrane or on Ca2+ binding and ATP-dependent Ca2+ accumulation. However, preincubation of SR vesicles with verapamil (18 hours, 4 degrees C) or its introduction into the medium for SR vesicle isolation leads to the inhibition of passive Ca2+ fluxes.  相似文献   

6.
For cell and molecular biological studies of heart formation and function cell cultures of embryonal, neonatal or adult hearts of various vertebrates, notably rat and chicken, have been widely used. As the myocardium-specific cell-cell junctions, the intercalated disks (ID), have recently been found to be particularly sensitive to losses of - or mutations in - certain cytoskeletal proteins, resulting in cardiac damages, we have examined the ID organization in primary cultures of cardiomyocytes obtained from neonatal rats. Using immunofluorescence and immunoelectron microscopy, we have studied the major ID components for up to 2 weeks in culture, paying special attention to spontaneously beating, individual cardiomyocytes and myocardial cell colonies. While our results demonstrate the formation of some ID-like cardiomyocyte-connecting junction arrays, they also reveal a variety of structural disorders such as rather extended, junction-free ID regions, sac-like invaginations and endocytotic blebs as well as accumulations of intracytoplasmic structures suggestive of endocytosed forms of junction-derived vesicles or of junction fragments resembling fascia adhaerens elements. Moreover, we have noticed a novel type of small, obviously plaque-free cytoplasmic vesicles containing one or both of the desmosomal cadherins, desmocollin Dsc2 and desmoglein Dsg2. We conclude that cardiomyocyte cultures are useful model systems for studies of certain aspects of myocardiac differentiation and functions but, on the other hand, show progressive disintegration and deterioration. The potential value of molecular markers and reagents in studies of myocardial pathology as well as in the monitoring of myocardial differentiation of so-called stem cells is discussed.  相似文献   

7.
Desmosomes are not formed in epithelial cell cultures growing in media with low (less than or equal to 0.1 mM) concentrations of Ca2+ (LCM) but appear rapidly upon shift to media of normal calcium concentrations (NCM). Previous authors using immunolocalization of desmoplakin, a marker protein for the desmosomal plaque, in LCM-grown cells have interpreted positively stained, dense, cytoplasmic aggregates on intermediate filaments (IF) bundles as preformed plaque units which upon NCM shift would move to the plasma membrane and contribute to desmosome formation. Studying various cell cultures, including primary mouse keratinocytes and human A-431 cells, we show that most, probably all, desmoplakin-positive aggregates in LCM-grown cells are associated with membranous structures, mostly vesicles, and also contain other desmosomal markers, including desmoglein, a transmembrane glycoprotein. We interpret such vesicles as residual desmosome-derived domains endocytosed upon cell dissociation. Only keratinocytes grown for long times (2-4 wk) in LCM are practically free from such vesicles. In addition, we demonstrate that certain cells such as A-431 cells, when passaged in LCM and in the absence of stable junctions, are able to continually assemble "half-desmosomes" on the plasma membrane which in turn can be endocytosed as plaque-bearing vesicles. We also show that in LCM the synthesis of several desmosomal proteins (desmoplakins I and II, plakoglobin, desmoglein, "band 6 protein") continues and that most of the plaque protein, desmoplakin, is diffusely spread over the cytoplasm, apparently in a soluble monodisperse form of approximately 9S. From our results we propose that the plaque proteins occur in small, discrete, diffusible entities in the cytoplasm, in concentrations that are relatively high in LCM and low in NCM, from which they assemble directly, i.e., without intermediate precursor aggregates on IFs in the cytoplasm, on certain plasma membrane domains in a Ca2+ dependent process.  相似文献   

8.
Sickle cells contain internal vesicles which accumulate Ca2+. As shown here, the membrane enclosing the vesicles contains the plasma membrane Ca(2+)-ATPase, or Ca2+ pump, as judged by staining with an antibody directed against the protein. Moreover, the number of cells containing such vesicles increases upon deoxygenation. These findings argue strongly that the vesicles arise by endocytosis from the plasma membrane, and explain how they accumulate Ca2+. When sickle cells are depleted of ATP, Ca2+ is lost from the vesicles, as judged by the disappearance of staining with the Ca2+/membrane probe chlortetracycline (CTC), without a corresponding loss of antibody staining. This loss of Ca2+ can be inhibited by nitrendipine, a Ca2+ channel blocker. These results suggest that the vesicle membrane allows outward passage of Ca2+ by a nitrendipine-sensitive pathway, which can be overcome by the inward-directed activity of the Ca2+ pump of the vesicle membrane. If so, the Ca2+ which vesicles contain is in dynamic equilibrium with the cytoplasm of the sickle erythrocyte.  相似文献   

9.
Regulated exocytosis involves the Ca(2+)-triggered fusion of secretory vesicles with the plasma membrane, by activation of vesicle membrane Ca(2+)-binding proteins [1]. The Ca(2+)-binding sites of these proteins are likely to lie within 30 nm of the vesicle surface, a domain in which changes in Ca2+ concentration cannot be resolved by conventional fluorescence microscopy. A fluorescent indicator for Ca2+ called a yellow 'cameleon' (Ycam2) - comprising a fusion between a cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13 and an enhanced yellow-emitting GFP - which is targetable to specific intracellular locations, has been described [2]. Here, we generated a fusion between phogrin, a protein that is localised to secretory granule membranes [3], and Ycam2 (phogrin-Ycam2) to monitor changes in Ca2+ concentration ([Ca2+]) at the secretory vesicle surface ([Ca2+]gd) through alterations in fluorescence resonance energy transfer (FRET) between the linked cyan and yellow fluorescent proteins (CFP and YFP, respectively) in Ycam2. In both neuroendocrine PC12 and MIN6 pancreatic beta cells, apparent resting values of cytosolic [Ca2+] and [Ca2+](gd) were similar throughout the cell. In MIN6 cells following the activation of Ca2+ influx, the minority of vesicles that were within approximately 1 microm of the plasma membrane underwent increases in [Ca2+](gd) that were significantly greater than those experienced by deeper vesicles, and greater than the apparent cytosolic [Ca2+] change. The ability to image both global and compartmentalised [Ca2+] changes with recombinant targeted cameleons should extend the usefulness of these new Ca2+ probes.  相似文献   

10.
We have characterized the asymmetric effect of Ca2+ on passive K+ permeability in erythrocyte membranes, using inside out and right-side out vesicles. Ca2+, but not Mg2+, can induce an increase in K+ uptake in inside out vesicles. The half-maximal concentration of Ca2+ required to induce the K+ uptake is 0.2 mM, and the permeability increase is not specific for K+. Thus, the Ca2+- induced permeation process in inside out vesicles is changed from that in the energy-depleted intact cell which requires only micromolar concentrations of Ca2+ and is specific for K+. Removal of spectrin had no effect on the vesicle permeability increase due to Ca2+. Studies with N-ethylmaleimide show that the vesicle channel openings is mediated by a protein and passage is controlled by sulfhydryl groups; furthermore, the Ca2+-induced vesicle pathway is distinct from the normal channel for passive K+ leak in the absence of Ca2+. The protein is sensitive to its phospholipid environment since removal of easily accessible phospholipid head groups on the cytoplasmic face of the vesicles inhibits the Ca2+ -stimulated channel opening.  相似文献   

11.
The Ca2+-ATPase (SERCA) found in vesicles derived from the sarco/endoplasmic reticulum vesicles of rats brown adipose tissue and rabbit white muscle were identified by gel electrophoresis, Western blot, electron microscopy and immunolabeling with gold particles. In both tissues, the isoform found was SERCA 1. The Ca2+ affinity of the fat SERCA 1 was different from the muscle isoform. The degree of uncoupling is estimated measuring the ratio between Ca2+ transport and ATP cleaved. In brown fat vesicles the degree of uncoupling varied depending on the Ca2+ concentration of the medium. This was not observed in vesicles derived from muscle. At all Ca2+ concentrations tested, the uncoupling was not related to Ca2+ leakage from the membrane and was far more pronounced in fat than in muscle vesicle. When a Ca2+ gradient was formed across the vesicles membrane the heat released during ATP hydrolysis varied between 22 and 26 Kcal/mol in both fat and muscle vesicles but in the absence of a gradient the heat released was 17 Kcal/mol in fat and 12 Kcal/mol in muscle. The data reported indicate that the SERCA 1 of brown adipocytes is far more thermogenic than the white muscle SERCA 1, and suggest that, in addition to storing Ca2+ inside the endoplasmic reticulum, the SERCA 1 may represent a source of heat production contributing to the thermogenic function of brown adipose tissue.  相似文献   

12.
Numerous studies investigating the cGMP-gated cation conductance in rod disk membranes have purported to measure efflux of Ca2+ entrapped in rod disk membrane vesicles. We have utilized sonication and osmotic shock as additional tests for sensitivity of cGMP- and A23187-induced Ca2+ release to elimination of the transvesicular Ca2+ gradient. We find that 1) Treatment with sonication or osmotic shock in low Ca2+ medium does not release Ca2+ from either native cGMP/Ca2(+)-loaded vesicles or solubilized, reconstituted "Ca2(+)-loaded" vesicles, 2) 70-100% of the cGMP-induced "flux" and 90-100% of the A23187-induced Ca2+ "flux" is insensitive to elimination of the Ca2+ gradient by sonication or osmotic shock in low Ca2+ medium, and 3) total amount of releasable Ca2+ is related to membrane surface area rather than vesicle entrapment volume. We conclude that 1) A23187 disrupts binding of Ca2+ to proteins and phospholipids as well as releasing entrapped Ca2+ and 2) a large fraction of the cGMP-induced release observed in rod disk vesicles is due to release of bound Ca2+.  相似文献   

13.
Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement.  相似文献   

14.
Neurotransmission at chemically transmitting synapses requires calcium-mediated fusion of synaptic vesicles with the presynaptic membrane. Utilizing ultrastructural information available for the crustacean excitatory neuromuscular junction, we developed a model that employs the Monte Carlo simulation technique to follow the entry and movement of Ca2+ ions at a presynaptic active zone, where synaptic vesicles are preferentially docked for release. The model includes interaction of Ca2+ with an intracellular buffer, and variable separation between calcium channels and vesicle-associated Ca(2+)-binding targets that react with Ca2+ to trigger vesicle fusion. The end point for vesicle recruitment for release was binding of four Ca2+ ions to the target controlling release. The results of the modeling experiments showed that intracellular structures that interfere with Ca2+ diffusion (in particular synaptic vesicles) influence recruitment or priming of vesicles for release. Vesicular recruitment is strongly influenced by the separation distance between an opened calcium channel and the target controlling release, and by the concentration and binding properties of the intracellular buffers, as in previous models. When a single opened calcium channel is very close to the target, a single synaptic vesicle can be recruited. However, many of the single-channel openings actuated by a nerve impulse are likely to be ineffective for release, although they contribute to the buildup of total intracellular Ca2+. Thus, the overall effectiveness of single calcium channels in causing vesicles to undergo exocytosis is likely quite low.  相似文献   

15.
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump.  相似文献   

16.
《The Journal of cell biology》1994,127(6):1589-1601
Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed.  相似文献   

17.
Passive Ca2+ influx independent of ATP addition to the incubation medium, took place in plasma membrane vesicles isolated from rat liver. The rate of Ca2+ influx was found to depend on the concentration of added Ca2+, and on the incubation temperature, and was inhibited by La3+, Hg2+ and by p-chloromercuribenzoate. Influx was not blocked by calcium channel blockers, or affected by a range of uncouplers. Addition of the Ca2+ ionophore A23187 to vesicles that had taken up the ion induced a rapid efflux of Ca2+ especially when EGTA also was added to the incubation medium. A number of divalent cations inhibited Ca2+ influx. The vesicles could be frozen and stored overnight with little loss in activity. The kinetics of Ca2+ influx could be related to that which occurs in the unstimulated perfused rat liver. The data suggest that the plasma membrane vesicle preparation may be useful for further studies on the basal liver cell Ca2+ influx system in vitro.  相似文献   

18.
Calcium uptake in isolated brush-border vesicles from rat small intestine.   总被引:1,自引:1,他引:0  
Ca2+ uptake in brush-border vesicles isolated from rat duodena was studied by a rapid-filtration technique. Ca2+ uptake showed saturation kinetics, was dependent on the pH and ionic strength of the medium and was independent of metabolic energy. Uptake activity was readily inhibited by Ruthenium Red, La3+, tetracaine, EGTA, choline chloride and Na+ or K+. The effect of variations in medium osmolarity on Ca2+ uptake and the ionophore A23187-induced efflux of the cation from preloaded vesicles indicated that the Ca2+-uptake process involved binding to membrane components, as well as transport into an osmotically active space. Scatchard-plot analyses of the binding data suggested at least two classes of Ca2+-binding sites. The high-affinity sites, Ka = (2.7 +/- 1.1) x 10(4) M-1 (mean +/- S.D.) bound 3.2 +/- 0.8 nmol of Ca2+/mg of protein, whereas the low-affinity sites (Ka = 60 +/- 6 M-1) bound 110 +/- 17 nmol of Ca2+/mg of protein. In the presence of 100 mM-NaCl, 1.7 and 53 nmol of Ca2+/mg of protein were bound to the high- and low-affinity sites respectively. Decreased Ca2+-uptake activity was observed in vesicles isolated from vitamin D-deficient as compared with vitamin D-replete animals and intraperitoneal administration of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats 16 h before membrane isolation stimulated the initial rate of Ca2+ uptake significantly. The data indicated that Ca2+ entry and/or binding was passive and may involve a carrier-mediated Ca2+-uptake component that is associated with the brush-border membrane. Altering the electrochemical potential difference across the membrane by using anions of various permeability and selected ionophores appeared to increase primarily binding to the membrane rather than transport into the intravesicular space. Since there is considerable binding of Ca2+ to the vesicle interior, a comprehensive analysis of the transport properties of the brush-border membrane remains difficult at present.  相似文献   

19.
Plasma membrane vesicles were prepared from guinea pig peritoneal exudate neutrophils, using nitrogen cavitation to rupture the plasma membrane and differential centrifugation to separate the vesicles. The vesicles were enriched 13.2-fold in (Na+, K+)-ATPase activity and had a cholesterol:protein ratio of 0.15, characteristic of plasma membranes. Contamination of the vesicle preparation with DNA or marker enzyme activities for intracellular organelles was very low. Studies designed to determine vesicle sidedness and integrity indicated that 33% were sealed, inside-out; 41% were sealed, right side-out, and 26% were leaky. The vesicles accumulated 45Ca2+ in a linear fashion for 45 min. The uptake was dependent on the presence of oxalate and MgATP in the incubating medium. Uptake showed a Ka for free Ca2+ of 164 nM and a Vmax of 17.2 nmol/mg . min (based on total protein). GTP, ITP, CTP, UTP, ADP, or AMP supported uptake at rates less than or equal to 11% of ATP. Ca2+ uptake was maximal at pH 7-7.5. Calcium stimulated the hydrolysis of ATP by the vesicles with a Ka for free Ca2+ of 440 nM and Vmax of 17.5 nmol/mg . min (based on total protein). When the Ca2+ uptake rate was based upon those vesicles expected to transport Ca2+ (33% sealed, inside-out vesicles) and Ca2+-stimulated ATPase activity was based upon those vesicles expected to express that activity (26% leaky + 33% sealed, inside-out vesicles), the molar stoichiometry of Ca2+ transported:ATP hydrolyzed was 2.12 +/- 0.12. Calmodulin did not increase either Vmax or Ka for free Ca2+ of the uptake system in the vesicles, even when they were treated previously with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The high affinity of this system for Ca2+, specificity for ATP, physiological pH optimum, and stoichiometry of Ca2+ transported:ATP hydrolyzed suggest that it represents an important mechanism by which neutrophils maintain low levels of cytoplasmic free Ca2+.  相似文献   

20.
It is widely assumed that the coordinate assembly of desmosomal cadherins and plaque proteins into desmosome-typical plaque-coated membrane domains, capable of anchoring intermediate-sized filaments (IF), requires cell-to-cell contacts and a critical extracellular Ca2+ concentration. To test this hypothesis we studied several cell lines grown for years in media with less than 0.1 mM Ca2+ to steady-state low Ca2+ medium (LCM) conditions, particularly the human keratinocyte line HaCaT devoid of any junctional cell contact (HaCaT-L cells). Using immunolocalization and vesicle fractionation techniques, we found that the transmembrane glycoprotein, desmoglein (Dsg), colocalized with the plaque proteins, desmoplakin and plakoglobin. The sites of coassembly of desmosomal molecules in HaCaT-L cells as well as in HaCaT cells directly brought into LCM were identified as asymmetric plaque-coated plasma membrane domains (half-desmosomes) or as special plaque- associated cytoplasmic vesicles, most of which had formed endocytotically. The surface exposure of Dsg in these half-desmosomes was demonstrated by the binding, in vivo, of antibodies specific for an extracellular Dsg segment which also could cross-bridge them into symmetric quasi-desmosomes. Otherwise, these half-desmosomes were shown in LCM to be taken up endocytotically. Half-desmosomal assemblies were also seen in uncoupled cells in normal Ca2+ medium. We conclude that, in the absence of intercellular contacts, assembly of desmosomal proteins at the cell surface takes place, resulting in transient half- desmosomes which then, in LCM and without a stable partner connection to the adjacent cell, can be endocytotically resumed. This frustrated cycle of synthesis and assembly maintains an ensemble of molecules characteristic of epithelial differentiation and the potential to form desmosomes, even when the final junctional structure cannot be formed. We propose that these half-desmosomal structures are general cell structures of epithelial and other desmosome-forming cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号